

NuCOM

PCI-7841/cPCI-7841/PM-7841

Dual-Port Isolated
CAN Interface Card
User’s Guide

Recycled Paper

©Copyright 1998∼2001 ADLINK Technology Inc.

All Rights Reserved.

Manual Rev. 2.20: June. 6, 2001

Part No : 50-11109-100

The information in this document is subject to change without prior
notice in order to improve reliability, design and function and does not
represent a commitment on the part of the manufacturer.

In no event will the manufacturer be liable for direct, indirect, special,
incidental, or consequential damages arising out of the use or inability to
use the product or documentation, even if advised of the possibility of
such damages.

This document contains proprietary information protected by copyright.
All rights are reserved. No part of this manual may be reproduced by
any mechanical, electronic, or other means in any form without prior
written permission of the manufacturer.

Trademarks

PCI-7841, cPCI-7841, and PM-7841 are registered trademarks of
ADLINK Technology Inc. Other product names mentioned herein are
used for identification purposes only and may be trademarks and/or
registered trademarks of their respective companies.

Getting service from ADLINK
Customer Satisfaction is always the most important thing for ADLINK
Tech Inc. If you need any help or service, please contact us and get it.

ADLINK Technology Inc.
Web Site http://www.adlink.com.tw

Sales & Service service@adlink.com.tw
NuDAQ nudaq@adlink.com.tw
NuDAM nudam@adlink.com.tw
NuIPC nuipc@adlink.com.tw
NuPRO nupro@adlink.com.tw
Software sw@adlink.com.tw

Technical
Support

AMB amb@adlink.com.tw
TEL +886-2-82265877 FAX +886-2-82265717

Address 9F, No. 166, Jian Yi Road, Chungho City, Taipei, 235 Taiwan, R.O.C.

Please inform or FAX us of your detailed information for a prompt,
satisfactory and constant service.

Detailed Company Information

Company/Organization
Contact Person
E-mail Address
Address
Country
TEL FAX
Web Site

Questions
Product Model

¨OS:
¨Computer Brand:

Environment to Use

¨M/B: ¨CPU:

¨Chipset: ¨BIOS:

¨Video Card:

¨Network Interface Card:

¨Other :

Challenge Description

Suggestions to ADLINK

Table of Contents • i

Table of Contents

Chapter 1 Introduction.. 1

1.1 PCI/cPCI/PM-7841 Features ...2
1.2 Applications ...4
1.3 Specifications ...5

Chapter 2 Installation.. 7

2.1 Before Installation PCI/cPCI/PM-7841................................7
2.2 Installing PCI-7841 ...8
2.3 Installing cPCI-7841.. 10
2.4 Installing PM-7841 .. 12
2.4 Jumper and DIP Switch Description................................. 13
2.5 Base Address Setting ... 14
2.6 IRQ Level Setting ... 16

Chapter 3 Function Reference..17

3.1 Functions Table.. 18
3.1.1 PORT_STRUCT structure define.. 20
3.1.2 PORT_STATUS structure define .. 21
3.1.3 CAN_PACKET structure define .. 23
3.1.4 DEVICENET_PACKET structure define............................ 24

3.2 CAN LAYER Functions ... 25

Product Warranty/Service..60

Introduction • 1

1

Introduction

The PCI/cPCI/PM-7841 is a Controller Area Network (CAN) interface
card used for industrial PC with PCI, Compact-PCI, and PC104 bus. It
supports dual ports CAN’s interface that can run independently or
bridged at the same time. The built-in CAN controller provides bus
arbitration and error detection with auto correction and re-transmission
function. The PCI cards are plug and play therefore it is not necessary
to set any jumper for matching the PC environment.

The CAN (Controller Area Network) is a serial bus system originally
developed by Bosch for use in automobiles, is increasing being used in
industry automation. It multi-master protocol, real-time capability, error
correction and high noise immunity make it especially suited for
intelligent I/O devices control network.

The PCI/cPCI/PM-7841 is programmed by using the ADLINK‘s software
library. The programming of this PCI card is as easy as AT bus add-on
cards.

2 • Introduction

1.1 PCI/cPCI/PM-7841 Features

The PCI-7841 is a Dual-Port Isolated CAN Interface Card with the
following features:

• Two independent CAN network operation

• Bridge function supports

• Compatible with CAN specification 2.0 parts A and B

• Optically isolated CAN interface up to 2500 Vrms

isolation protection

• Direct memory mapping to the CAN controllers

• Powerful master interface for CANopen, DeviceNet and

SDS application layer protocol

• Up to 1Mbps programmable transfer rate

• Supports standard DeviceNet data rates 125, 250 and

500 Kbps

• PCI bus plug and play

• DOS library and examples included

The cPCI-7841 is a Dual-Port Isolated CAN Interface Card with the
following features:

• Two independent CAN network operation

• Bridge function supports

• Compatible with CAN specification 2.0 parts A and B

Introduction • 3

• Optically isolated CAN interface up to 2500 Vrms

isolation protection

• Direct memory mapping to the CAN controllers

• Powerful master interface for CANopen, DeviceNet and

SDS application layer protocol

• Up to 1Mbps programmable transfer rate

• Supports standard DeviceNet data rates 125, 250 and

500 Kbps

• PCI bus plug and play

• compact-PCI industry bus

• DOS library and examples included

The PM-7841 is a Dual-Port Isolated CAN Interface Card with the
following features:

• Two independent CAN network operation

• Bridge function supports

• Compatible with CAN specification 2.0 parts A and B

• Optically isolated CAN interface up to 2500 Vrms

isolation protection

• Direct memory mapping to the CAN controllers

• Powerful master interface for CANopen, DeviceNet and

SDS application layer protocol

• Up to 1Mbps programmable transfer rate

4 • Introduction

• Supports standard DeviceNet data rates 125, 250 and

500 Kbps

• DIP-Switch for base address configuration

• Software Programmable Memory-Mapped Address

• PC-104 industry form factor

• DOS library and examples included

1.2 Applications

• Industry automation

• Industry process monitoring and control

• Manufacture automation

• Product testing

Introduction • 5

1.3 Specifications

PCI-7841 Specification Table

Ports 2 CAN channels (V2.0 A,B)
CAN Controller SJA1000
CAN Transceiver 82c250
Signal Support CAN_H, CAN_L
Isolation Voltage 2500 Vrms
Connectors Dual DB-9 male connectors
Operation Temperature 0 ~ 60° C
Storage Temperature -20° ~ 80° C
Humidity 5% ~ 95% non-condensing
IRQ Level Set by Plug and Play BIOS
I/O port address Set by Plug and Play BIOS
Power Consumption
(without external devices)

400mA @5VDC (Typical)
900mA @5VDC (Maximum)

Size 132(L)mm x 98(H)mm

cPCI-7841 Specification Table

Ports 2 CAN channels (V2.0 A,B)
CAN Controller SJA1000
CAN Transceiver 82c250
Signal Support CAN_H, CAN_L
Isolation Voltage 2500 Vrms
Connectors Dual ?? male connectors
Operation Temperature 0 ~ 60° C
Storage Temperature -20° ~ 80° C
Humidity 5% ~ 95% non-condensing
IRQ Level Set by Plug and Play BIOS
I/O port address Set by Plug and Play BIOS
Power Consumption
(without external devices)

400mA @5VDC (Typical)
900mA @5VDC (Maximum)

Size 132(L)mm x 98(H)mm

6 • Introduction

PM-7841 Specification Table
Ports 2 CAN channels (V2.0 A,B)
CAN Controller SJA1000
CAN Transceiver 82c250/82c251
Signal Support CAN_H, CAN_L
Isolation Voltage 1000 Vrms
Connectors Dual 5 male connectors
Operation Temperature 0 ~ 60° C
Storage Temperature -20° ~ 80° C
Humidity 5% ~ 95% non-condensing
IRQ Level Set by Jumper
I/O port address Set by DIP Switch
Memory Mapped Space 128 Bytes by Software
Power Consumption
(without external devices)

400mA @5VDC (Typical)
900mA @5VDC (Maximum)

Size 90.17(L)mm x 95.89(H)mm

Installation • 7

2

Installation

This chapter describes how to install the PCI/cPCI/PM-7841. At first, the
contents in the package and unpacking information that you should be
careful are described.

2.1 Before Installation PCI/cPCI/PM-7841

Your PCI/cPCI/PM-7841 card contains sensitive electronic components
that can be easily damaged by static electricity.

The card should be done on a grounded anti-static mat. The operator
should be wearing an anti-static wristband, grounded at the same point
as the anti-static mat.

Inspect the card module carton for obvious damage. Shipping and
handling may cause damage to your module. Be sure there are no
shipping and handing damages on the module before processing.

After opening the card module carton, exact the system module and
place it only on a grounded anti -static surface component side up.

Note: DO NOT APPLY POWER TO THE CARD IF IT HAS BEEN

DAMAGED.

You are now ready to install your PCI/cPCI/PM-7841.

8 • Installation

2.2 Installing PCI-7841

What do you have

In addition to this User's Manual, the package includes the following
items:

• PCI-7841 Dual Port PCI Isolated CAN Interface Card

• ADLINK All-xxxxx CD-ROM

If any of these items is missing or damaged, contact the dealer from
whom you purchased the product. Save the shipping materials and
carton in case you want to ship or store the product in the future.

PCI-7841 Layout

Terminator Configuration

A 120 Ω terminal resistor is installed for each port, while JP1 enables
the terminal resistor for port0 and JP2 enables the terminal resistor for
port 1

P2

P3

JP1

JP2

Installation • 9

Connector Pin Define

The P3 and P4 are CAN connector, the below picture is their pin define

1
2

3
5

4

8
6

7
9

CANL

Shield

CANH

DIP-9 Connector

10 • Installation

2.3 Installing cPCI-7841

What do you have

In addition to this User's Manual, the package includes the following
items:

• cPCI-7841 Dual Port Compact-PCI Isolated CAN

Interface Card

• ADLINK All-xxxxx CD-ROM

If any of these items is missing or damaged, contact the dealer from
whom you purchased the product. Save the shipping materials and
carton in case you want to ship or store the product in the future.

cPCI-7841 Layout

Terminator Configuration

A 120 Ω terminal resistor is installed for each port, while JP1 enables
the terminal resistor for port0 and JP2 enables the terminal resistor for
port 1

Connector Pin Define

The J1 and J2 are CAN Connector, the below picture is their pin define

JP1 J1

J2

JP2

Installation • 11

2 3 4 5

C
A

N
_L

C
A

N
_H

S
hi

el
d

1

Combicon-Style Connector

12 • Installation

2.4 Installing PM-7841

What do you have

In addition to this User's Manual, the package includes the following
items:

• PM-7841 Dual Port PC-104 Isolated CAN Interface Card

• ADLINK All-xxxxx CD-ROM

If any of these items is missing or damaged, contact the dealer from
whom you purchased the product. Save the shipping materials and
carton in case you want to ship or store the product in the future.

PM-7841 Layout

JP1

JP2

J1

J2

Installation • 13

Terminator Configuration

A 120 Ω terminal resistor is installed for each port, while JP1 enables
the.

terminal resistor for port0 and JP2 enables the terminal resistor for port
1.

Connector Pin Define

The J1 and J2 are CAN Connector, the below picture is their pin define.

2 3 4 5

C
A

N
_L

C
A

N
_H

S
h

ie
ld

1

2.4 Jumper and DIP Switch Description

You can configure the output of each channel and base address by
setting jumpers and DIP switches on the PM-7841. The card's jumpers
and switches are preset at the factory. Under normal circumstances,
you should not need to change the jumper settings.

A jumper switch is closed (sometimes referred to as "shorted") with the
plastic cap inserted over two pins of the jumper. A jumper is open with
the plastic cap inserted over one or no pin(s) of the jumper.

14 • Installation

2.5 Base Address Setting

The PM-7841 requires 16 consecutive address locations in I/O address
space. The base address of the PM-7841 is restricted by the following
conditions.

1. The base address must be within the range 200hex to 3F0hex.

2. The base address should not conflict with any PC reserved I/O

address.

The PM-7841's I/O port base address is selectable by an 5 position DIP
switch SW1 (refer to Table 2.1). The address settings for I/O port from
Hex 200 to Hex 3F0 is described in Table 2.2 below. The default base
address of your PM-7841 is set to hex 200 in the factory(see Figure
below).

 SW1 : Base Address = 0x200

1 2 3 4 5

ON

 A (8 7 6 5 4)

Figure Default Base Address Configuration

Installation • 15

I/O port

address(hex)
fixed
A9

1
A8

2
A7

3
A6

4
A5

5
A4

200-20F
OFF
(1)

ON
(0)

ON
(0)

ON
(0)

ON
(0)

ON
(0)

210-21F
OFF
(1)

ON
(0)

ON
(0)

ON
(0)

ON
(0)

OFF
(1)

:

(*) 2C0-2CF
OFF
(1)

ON
(0)

OFF
(1)

OFF
(1)

ON
(0)

ON
(0)

:

300-30F
OFF
(1)

OFF
(1)

ON
(0)

ON
(0)

ON
(0)

ON
(0)

:

3F0-3FF
OFF
(1)

OFF
(1)

OFF
(1)

OFF
(1)

OFF
(1)

OFF
(1)

(*): default setting ON : 0

X: don't care OFF : 1

Note: A4, ..., A9 correspond to PC-104(ISA) bus address lines.

16 • Installation

2.6 IRQ Level Setting

A hardware interrupt can be triggered by the external Interrupt signal
which is from JP3 ad JP4.

The jumper setting is specified as below:

Note : Be aware that there is no other add-on cards sharing the same

interrupt level in the system.

(IRQ)

 9 7 6 5 3 X 15 12 11 10

Interrupt Default Setting = IRQ15

IRQ Setting

Function Reference • 17

3

Function Reference

The cPCI/PCI-7841 functions are organize into the following sections:

♦ CAN layer functions

• Card Initialization and configuration functions

• CAN layer I/O functions

• CAN layer status functions

• CAN layer Error and Event Handling functions

♦ DeviceNet layer functions

• Send and Receive packet functions

• Connection establish and release functions

• DeviceNet object class functions

The particular functions associated with each function are presented in
next page.

18 • Function Reference

3.1 Functions Table

CAN layer functions

Function Type Function Name Page

PM-7841 Initial PM7841_Install() 25
GetDriverVersion() 25
CanOpenDriver() 27
CanCloseDriver() 28
CanConfigPort() 29
CanDetectBaudrate() 30
_7841_Read() 32

_7841_Write() 32
CanEnableReceive() 33
CanDisableReceive() 34
CanSendMsg() 35
CanRcvMsg() 36

CanGetRcvCnt() 51
CanClearOverrun() 37
CanClearRxBuffer() 38
CanClearTxBuffer() 39
CanGetErrorCode() 40
CanGetErrorWarningLimit() 40
CanSetErrorWarningLimit() 43
CanGetRxErrorCount() 45
CanGetTxErrorCount() 45
CanSetTxErrorCount() 47
CanGetPortStatus() 48
CanGetLedStatus()1 49

CanSetLedStatus()1 50

Function Reference • 19

Error and Event handling functions

Operation System Function Name Page

CanInstallCallBack() 52
DOS

CanRemoveCallBack() 54
Windows 95/98/NT CanInstallEvent() 58

Note : only for compact PCI and PC-104 version.

20 • Function Reference

3.1.1 PORT_STRUCT structure define

The PORT_STRUCT structure defines the mode of id-mode,
acceptance code, acceptance mask and baud rate of a physical CAN
port. It is used by the CanPortConfig(), and CanGetPortStatus()
functions.

typedef struct _tagPORT_STRUCT

{

int mode; // 0 for 11-bit; 1 for 29-bit

 DWORD accCode, accMask;

 int baudrate;

 BYTE brp, tseg1, tseg2; // Used only if baudrate = 4

 BYTE sjw, sam; // Used only if baudrate = 4

 }PORT_STRUCT;

Members

 mode: 0 means using 11-bit in CAN-ID field

 1 means using 29-bit in CAN-ID field.

 accCode: Acceptance Code for CAN controller.

 accMask: Acceptance Mask for CAN controller.

 baudrate: Baud rate setting for the CAN controller.

Value Baudrate
0 125 Kbps
1 250 Kbps
2 500 Kbps
3 1M Kbps
4 User-Defined

 brp, tseg1, tseg2, sjw, sam : Use for User-Defined Baudrate

See Also

CanPortConfig(), CanGetPortStatus(), and PORT_STATUS
structure

Function Reference • 21

3.1.2 PORT_STATUS structure define

The PORT_STATUS structure defines the status register and
PORT_STRUCT of CAN port. It is used by the CanGetPortStatus()
functions.

typedef struct _tagPORT_STATUS

{

 PORT_STRUCT port;

 PORT_REG status;

}PORT_STATUS;

Members

 port: PORT_STRUCT data

 status: status is the status register mapping of CAN
controller.

typedef union _tagPORT_REG

{

 struct PORTREG_BIT bit;

 unsigned short reg;

}PORT_REG;

struct PORTREG_BIT

{

 unsigned short RxBuffer: 1;

 unsigned short DataOverrun: 1;

 unsigned short TxBuffer: 1;

 unsigned short TxEnd: 1;

 unsigned short RxStatus: 1;

 unsigned short TxStatus: 1;

 unsigned short ErrorStatus: 1;

22 • Function Reference

unsigned short BusStatus: 1;

unsigned short reserved: 8;

};

See Also

CanGetPortStatus(), and PORT_STATUS structure

Function Reference • 23

3.1.3 CAN_PACKET structure define

The CAN_PACKET structure defines the packet format of CAN packet.
It is used by the CanSendMsg(), and CanRcvMsg() functions.

typedef struct _tagCAN_PACKET

{

DWORD CAN_ID;

BYTE rtr;

BYTE len;

BYTE data[8]

DWORD time;

BYTE reserved

}CAN_PACKET;

Members

CAN_ID :CAN ID field (32-bit unsigned integer)

rtr :CAN RTR bit.

len :Length of data field.

data :Data (8 bytes maximum)

time :Reserved for future use

reserved :Reserved byte

See Also

CanSendMsg(), and CanRcvMsg()

24 • Function Reference

3.1.4 DEVICENET_PACKET structure define

The DEVICENET_PACKET structure defines the packet format of
DeviceNet packet. It is widely used by the DeviceNet layer functions.

typedef struct _tagDEVICENET_PACKET

{

BYTE Group;

BYTE MAC_ID;

BYTE HostMAC_ID;

BYTE MESSAGE_ID;

BYTE len;

BYTE data[8];

DWORD time;

BYTE reserved;

}DEVICENET_PACKET;

Members

 Group:Group: of DeviceNet packet.

 MAC_ID: Address of destination.

 HostMAC_ID: Address of source.

 MESSAGE_ID: Message ID of DeviceNet packet.

 len: Length of data field.

 data: Data (8 bytes maximum).

See Also

SendDeviceNetPacket(), and RcvDeviceNetPacket()

Function Reference • 25

3.2 CAN LAYER Functions

~ CAN-layer Card Initialization Functions

PM7841_Install(base, irq_chn, 0xd000)

Purpose Get the version of driver

Prototype C/C++

int PM7841_Install(int baseAddr, int irq_chn, int
memorySpace)

Visual Basic(Windows 95/98/NT)

Parameters baseAddr: Base Address of PM-7841(DIP Switch)

Irq_chn: IRQ channel (Jumpper)

MemorySpace: Memory Mapping Range

Return Value A 16-bit unsigned integer

High byte is the major version

Low byte is the major version

Remarks Call this function to retrieve the version of current
using driver. This function is for your program to
get the version of library and dynamic-linked
library.

See Also none

Usage C/C++

 #include “pm7841.h”

WORD version = GetDriverVersion();

majorVersion = version >> 8;

minorVersion = version & 0x00FF;

Visual Basic(Windows 95/98/NT)

26 • Function Reference

GetDriverVersion()

Purpose Get the version of driver

Prototype C/C++

 WORD GetDriverVersion(void)

 Visual Basic(Windows 95/98/NT)

Parameters none

Return Value A 16-bit unsigned integer

High byte is the major version

Low byte is the major version

Remarks Call this function to retrieve the version of current
using driver. This function is for your program to
get the version of library and dynamic-linked
library.

See Also none

Usage C/C++

 #include “pci7841.h”

WORD version = GetDriverVersion();

majorVersion = version >> 8;

minorVersion = version & 0x00FF;

Visual Basic(Windows 95/98/NT)

Function Reference • 27

CanOpenDriver()

Purpose Open a specific port, and initialize driver.

Prototype C/C++

int CanOpenDriver(int card, int port)

Visual Basic(Windows 95/98/NT)

Parameters card: index of card

port: index of port

Return Value Return a handle for open port

-1 if error occurs

Remarks Call this function to open a port

Under DOS operation system, you will receive –1
if there is not enough memory. If writing program
for the Windows system. It will return -1, if you
want to open a port had been opened. And you
must use CanCloseDriver() to close the port after
using.

See Also CanCloseDriver()

Usage C/C++

#include “pci7841.h”

int handle = CanOpenDriver();

CanSendMsg(handle, &msg);

CanCloseDriver(handle);

Visual Basic(Windows 95/98/NT)

28 • Function Reference

CanCloseDriver()

Purpose Close an opened port, and release driver.

Prototype C/C++

int CanCloseDriver(int handle)

Visual Basic(Windows 95/98/NT)

Parameters handle : handle retrieve from CanOpenDriver()

 Port : index of port

Return Value Return 0 if successful

-1 if error occurs

Remarks Call this function to close a port.

See Also CanOpenDriver()

Usage See usage of CanOpenDriver().

Function Reference • 29

CanConfigPort()

Purpose Configure properties of a port

Prototype C/C++

int CanConfigPort(int handle, PORT_STRUCT
*ptrStruct)

Visual Basic(Windows 95/98/NT)

Parameters handle : handle retrieve from CanOpenDriver()

 PtrStruct : a pointer of PORT_STRUCT type

Return Value Return 0 is successful

-1 if error occurs

Remarks Configure a port that had been opened.

The properties of a CAN port such as baud rate,
acceptance code, acceptance mask, operate
mode. After configuration is over, the port is ready
to send and receive data.

See Also CanConfigPort()

Usage C/C++

#include “pci7841.h

PORT_STRUCT port_struct;

int handle = CanOpenDriver(0, 0); // Open
port 0 of card 0

port_struct.mode = 0; // CAN2.0A
(11-bit CAN id)

port_struct.accCode = 0; // This setting of
acceptance code and

port_struct.accMask = 0x7FF; // mask enable
all MAC_IDs input

port_struct.baudrate = 0; // 125K bps

CanConfigPort(handle, &port_struct);

CanCloseDriver(handle);

Visual Basic(Windows 95/98/NT)

30 • Function Reference

CanDetectBaudrate()

Purpose Perform auto-detect baud rate algorithm.

Prototype C/C++

 int CanDetectBaudrate(int handle, int miliSecs)

 Visual Basic(Windows 95/98/NT)

Parameters handle : handle retrieve from CanOpenDriver()

MiliSecs : timeout time(ms)

Return Value Return –1 if error occurs

Others is the baudrate

Value Baudrate
0 125 Kbps
1 250 Kbps
2 500 Kbps
3 1M Kbps

Remarks Call this function to detect the baud rate of a port.

The function performs an algorithm to detect your
baud rate. It needs that there are activities on the
network. And it will return a –1 when detecting no
activity on the network or time was exceeded.

See Also none

Usage C/C++

#include “pci7841.h

PORT_STRUCT port_struct;”

int handle = CanOpenDriver();

port_struct.mode = 0; // CAN2.0A (11-bit
CAN id)

port_struct.accCode = 0; // This setting of
acceptance code and

port_struct.accMask = 0x7FF; // mask enable
all MAC_IDs input

Function Reference • 31

port_struct.baudrate = CanDetectBaudrate(handle,
1000):

CanConfigPort(handle, &port_struct);

CanCloseDriver(handle);

Visual Basic(Windows 95/98/NT)

32 • Function Reference

CanRead()

Purpose Direct read the register of PCI-7841.

Prototype C/C++

BYTE CanRead(int handle, int offset)

Visual Basic(Windows 95/98/NT)

Parameters handle : handle retrieve from CanOpenDriver()

offset : offset of register

Return Value Return data read from port.

Remarks Direct read the register of PCI-7841.

See Also CanWrite()

Usage none

CanWrite()

Purpose Direct write the register of PCI-7841.

Prototype C/C++

void CanWrite(int handle, int offset, BYTE data)

Visual Basic(Windows 95/98/NT)

Parameters handle : handle retrieve from CanOpenDriver()

Offset : offset of register

data : data write to the port

Return Value none

Remarks Call this function to directly write a register of
PCI-7841

See Also CanRead()

Usage none

Function Reference • 33

~ CAN-layer I/O Functions

CanEnableReceive()

Purpose Enable receive of a CAN port.

Prototype C/C++

void CanEnableReceive(int handle);

Visual Basic(Windows 95/98/NT)

Parameters handle : handle retrieve from CanOpenDriver()

Return Value none

Remarks Call this function to enable receive.

Any packet on the network that can induce a
interrupt on your computer. If that packet can pass
your acceptance code and acceptance mask
setting. So if your program doesn’t want to be
disturbed. You can call CanDisableReceive() to
disable receive and CanEnableReceive() to enable
receives.

See Also CanDisableReceive()

Usage none

34 • Function Reference

CanDisableReceive()

Purpose Enable receive of a CAN port.

Prototype C/C++

void CanEnableReceive(int handle);

Visual Basic(Windows 95/98/NT)

Parameters handle : handle retrieve from CanOpenDriver()

Return Value none

Remarks Please refer the CanEnableReceive()

See Also CanEnableReceive()

Usage none

Function Reference • 35

CanSendMsg()

Purpose Send can packet to a port

Prototype C/C++

int CanSendMsg(int handle, CAN_PACKET
*packet);

Visual Basic(Windows 95/98/NT)

Parameters handle : handle retrieve from CanOpenDriver()

Packet : CAN_PACKET data

Return Value Return 0 is successful

-1 if error occurs

Remarks Send a message to an opened CAN port.

Actually, this function copies the data to the
sending queue. Error occurs when the port has not
been opened yet or the packet is a NULL pointer.
You can use the Error and Event handling
functions to handle the exceptions.

See Also CanRcvMsg()

Usage C/C++

#include “pci7841.h

PORT_STRUCT port_struct;

CAN_PACKET sndPacket, rcvPacket;

int handle = CanOpenDriver(0, 0); // open
the port 0 of card 0

CanConfigPort(handle, &port_struct);

CanSendMsg(handle, &sndPacket);

if(CanRcvMsg(handle, &rcvPacket) == 0)

{
}

CanCloseDriver(handle);

Visual Basic(Windows 95/98/NT)

36 • Function Reference

CanRcvMsg()

Purpose Receive a can packet from a port

Prototype C/C++

int CanSendMsg(int handle, CAN_PACKET
*packet);

Visual Basic(Windows 95/98/NT)

Parameters handle : handle retrieve from CanOpenDriver()

Packet : CAN_PACKET data

Return Value Return 0 is successful

-1 if error occurs

Remarks Receive a message from an opened CAN port.

There are only 64-bytes FIFO under hardware. It
can store from 3 to 21 packets. So there are
memory buffer under driver. When data comes,
the driver would move it from card to memory. It
starts after your port configuration is done. This
function copies the buffer to your application. So if
your program has the critical section to process
the data on the network. We suggest that you can
call the CanClearBuffer() to clear the buffer first.
Error would be happened most under the following
conditions:

1. You want to access a port that has not be

opened.

2. Your packet is a NULL pointer.

3. The receive buffer is empty.

You can use the Status handling functions to handle the exceptions.

See Also CanSendMsg()

Usage See the CanSendMsg()

Function Reference • 37

~ CAN-layer Status Functions

CanClearOverrun()

Purpose Clear data overrun status

Prototype C/C++

void CanClearOverrun(int handle)

Visual Basic(Windows 95/98/NT)

Parameters handle : handle retrieve from CanOpenDriver()

Return Value none

Remarks Clear the data overrun status

Sometimes if your system has heavy load, and the
bus is busy. The data overrun would be signalled.
A Data Overrun signals, that data are lost, possibly
causing inconsistencies in the system.

See Also CanRcvMsg()

Usage C/C++

#include “pci7841.h

int handle = CanOpenDriver(0, 0); // open
the port 0 of card 0

….

CanClearOverrun(handle);

CanCloseDriver(handle);

Visual Basic(Windows 95/98/NT)

38 • Function Reference

CanClearRxBuffer()

Purpose Clear data in the receive buffer

Prototype C/C++

void CanClearRxBuffer(int handle)

Visual Basic(Windows 95/98/NT)

Parameters handle : handle retrieve from CanOpenDriver()

Return Value none

Remarks Clear the data in the receive buffer

There are 2-type of buffer defined in the driver.
First one is the FIFO in the card, the second one
is the memory space inside the driver. Both of
them would be cleared after using this function.

See Also CanRcvMsg()

Usage C/C++

#include “pci7841.h

int handle = CanOpenDriver(0, 0); // open
the port 0 of card 0

….

CanClearRxBuffer(handle);

CanCloseDriver(handle);

Visual Basic(Windows 95/98/NT)

Function Reference • 39

CanClearTxBuffer()

Purpose Clear Transmit Buffer

Prototype C/C++

void CanClearTxBuffer(int handle)

Visual Basic(Windows 95/98/NT)

Parameters handle : handle retrieve from CanOpenDriver()

Return Value none

Remarks Clear the data in the transmit buffer.

Under a busy DeviceNet Network, your transmit
request may not be done due to the busy in the
network. The hardware will send it automatically
when bus is free. The un-send message would be
stored in the memory of the driver. The sequence
of outgoing message is the FIRST-IN-FIRST-OUT.
According this algorithm, if your program need to
send an emergency data, you can clear the
transmit buffer and send it again.

See Also CanRcvMsg()

Usage C/C++

#include “pci7841.h

int handle = CanOpenDriver(0, 0); // open
the port 0 of card 0

….

CanClearTxBuffer(handle);

CanCloseDriver(handle);

Visual Basic(Windows 95/98/NT)

40 • Function Reference

CanGetErrorCode()

Purpose Get the Error Code

Prototype C/C++

BYTE CanGetErrorCode(int handle)

Visual Basic(Windows 95/98/NT)

Parameters handle : handle retrieve from CanOpenDriver()

Return Value error code

Return error code is an 8-bit data

 Bit Symbol Name Value Function
7 ERRC1 Error Code 1
6 ERRC0 Error Code 0

1 Rx error occurred
during reception 5 DIR Direction

0 Tx error occurred
during ransmission

4 SEG4 Segment 4
3 SEG3 Segment 3
2 SEG2 Segment 2
1 SEG1 Segment 1
0 SEG0 Segment 0

Bit interpretation of ERRC1 and ERRC2

Bit ERRC1 Bit ERRC2 Function
0 0 bit error
0 1 form error
1 0 stuff error
1 1 other type of error

Function Reference • 41

Bit interpretation of SEG4 to SEG 0

SEG4 SEG3 SEG2 SEG1 SEG0 Function
0 0 0 1 1 start of frame
0 0 0 1 0 ID.28 to ID.21
0 0 1 1 0 ID.20 to ID.18
0 0 1 0 0 bit SRTR
0 0 1 0 1 bit IDE
0 0 1 1 1 ID.17 to ID.13
0 1 1 1 1 ID.12 to ID.5
0 1 1 1 0 ID.4 to ID.0
0 1 1 0 0 RTR bit
0 1 1 0 1 reserved bit 1
0 1 0 0 1 reserved bit 0
0 1 0 1 1 Data length code
0 1 0 1 0 Data field
0 1 0 0 0 CRC sequence
1 1 0 0 0 CRC delimiter
1 1 0 0 1 acknowledge slot
1 1 0 1 0 end of frame
1 0 0 1 0 intermission
1 0 0 0 1 active error flag
1 0 1 1 0 passive error flag
1 0 0 1 1 tolerate dominant bits
1 0 1 1 1 error delimiter
1 1 1 0 0 overload flag

Remarks Get the information about the type and location of
errors on the bus.
When bus error occurs, if your program installed
the call-back function or error-handling event. The
error-bit position would be captured into the card.
The value would be fixed in the card until your
program read it back.

See Also CanGetErrorWarningLimit(),

 CanSetErrorWarningLimit()

Usage C/C++

42 • Function Reference

#include “pci7841.h

int handle = CanOpenDriver(0, 0); // open
the port 0 of card 0

….

BYTE data = CanGetErrorCode();

CanCloseDriver(handle);

Visual Basic(Windows 95/98/NT)

Function Reference • 43

CanSetErrorWarningLimit()

Purpose Set the Error Warning Limit

Prototype C/C++

void CanSetErrorWarningLimit(int handle, BYTE
value)

Visual Basic(Windows 95/98/NT)

Parameters handle : handle retrieve from CanOpenDriver()

Value : Error Warning Limit

Return Value none

Remarks Set the error warning limit. If your program has
installed the error warning event or call-back
function. The error warning will be signaled after
the value of error counter passing the limit you set.

See Also CanGetErrorWarningLimit()

Usage C/C++

#include “pci7841.h

int handle = CanOpenDriver(0, 0); // open
the port 0 of card 0

….

CanSetErrorWarning(handle, 96);

CanCloseDriver(handle);

Visual Basic(Windows 95/98/NT)

44 • Function Reference

CanGetErrorWarningLimit()

Purpose Get the Error Warning Limit

Prototype C/C++

BYTE CanGetErrorWarningLimit(int handle)

Visual Basic(Windows 95/98/NT)

Parameters handle : handle retrieve from CanOpenDriver()

Return Value none

Remarks Get the error warning limit

See Also CanSetErrorWarningLimit()

Usage C/C++

#include “pci7841.h

int handle = CanOpenDriver(0, 0); // open
the port 0 of card 0

….

BYTE limit = CanClearOverrun(handle);

CanCloseDriver(handle);

Visual Basic(Windows 95/98/NT)

Function Reference • 45

CanGetRxErrorCount()

Purpose Get the current value of the receive error counter

Prototype C/C++

BYTE CanGetRxErrorCount(int handle)

Visual Basic(Windows 95/98/NT)

Parameters handle : handle retrieve from CanOpenDriver()

Return Value value

Remarks This function reflects the current of the receive
error counter. After hardware reset happened, the
value returned would be initialized to 0. If a bus -off
event occurs, the returned value would be 0.

See Also CanRcvMsg()

Usage C/C++

#include “pci7841.h

int handle = CanOpenDriver(0, 0); // open
the port 0 of card 0

….

BYTE error_count = CanGetTxErrorCount();

CanCloseDriver(handle);

Visual Basic(Windows 95/98/NT)

46 • Function Reference

CanGetTxErrorCount()

Purpose Get the current value of the transmit error counter

Prototype C/C++

BYTE CanGetTxErrorCount(int handle)

Visual Basic(Windows 95/98/NT)

Parameters handle : handle retrieve from CanOpenDriver()

Return Value value

Remarks This function reflects the current of the transmit
error counter. After hardware reset happened, the
value would set to 127. A bus -off event occurs
when the value reaches 255. You can call the
CanSetTxErrorCount() to set the value from 0 to
254 to clear the bus-off event.

See Also CanRcvMsg()

Usage C/C++

#include “pci7841.h

int handle = CanOpenDriver(0, 0); // open
the port 0 of card 0

….

BYTE error_count =
CanGetRxErrorCount(handle);

CanCloseDriver(handle);

Visual Basic(Windows 95/98/NT)

Function Reference • 47

CanSetTxErrorCount()

Purpose Set the current value of the transmit error counter

Prototype C/C++

void CanSetTxErrorCount(int handle, BYTE value)

Visual Basic(Windows 95/98/NT)

Parameters handle : handle retrieve from CanOpenDriver()

value : a byte value

Return Value value

Remarks This function set the current of the transmit error
counter.

Please see the remark of CanGetTxErrorCount().

See Also CanRcvMsg()

Usage C/C++

#include “pci7841.h

int handle = CanOpenDriver(0, 0); // open
the port 0 of card 0

….

CanSetRxErrorCount(handle, 0);

CanCloseDriver(handle);

Visual Basic(Windows 95/98/NT)

48 • Function Reference

CanGetPortStatus()

Purpose Get Port Status

Prototype C/C++

int CanGetPortStatus(int handle, PORT_STATUS
*PortStatus)

Visual Basic(Windows 95/98/NT)

Parameters handle : handle retrieve from CanOpenDriver()

PortStatus : Pointer of PORT_STATUS structure

Return Value No Error: 0

Error: -1

Remarks Get Port Status(See the structure define for
detailed description)

See Also

Usage C/C++

#include “pci7841.h

PORT_STATUS port_status;

int handle = CanOpenDriver(0, 0);// open the port
0 of card 0

CanGetPortStatus(&port_status);

CanClearOverrun();

CanCloseDriver(handle);

Visual Basic(Windows 95/98/NT)

Function Reference • 49

CanGetLedStatus()

Purpose Get the LED status of cPCI-7841 and PM-7841

Prototype C/C++

BYTE CanGetLedStatus (int card, int index);

Visual Basic(Windows 95/98/NT)

Parameters card : card number

Index : index of LED

Return Value status of Led

Value Function

0 Led Off

1 Led On

Remarks Get the status of Led

This function supports the cPCI-7841 and
PM-7841.

See Also CanSetLEDStatus()

Usage C/C++

#include “pci7841.h

int handle = CanOpenDriver(0, 0); // open
the port 0 of card 0

….

BYTE flag = CanGetLedStatus(0, 0);;

CanCloseDriver(handle);

Visual Basic(Windows 95/98/NT)

50 • Function Reference

CanSetLedStatus()

Purpose Set the Led Status of cPCI-7841

Prototype C/C++

void CanSetLedStatus (int card, int index, int
flashMode);

Visual Basic(Windows 95/98/NT)

Parameters card : card number

Index : index of Led

flashMode :

Value Function

0 Led Off

1 Led On

Return Value none

Remarks Set Led status of cPCI-7841 and PM-7841

This function supports the cPCI-7841 and
PM-7841

See Also CanRcvMsg()

Usage C/C++

#include “pci7841.h

int handle = CanOpenDriver(0, 0); // open
the port 0 of card 0

….

CanSetLedStatus(0, 0, 2); // Set Led
to flash

CanCloseDriver(handle);

Visual Basic(Windows 95/98/NT)

Function Reference • 51

CanGetRcvCnt()

Purpose Get the how many message in the FIFO

Prototype C/C++

int _stdcall CanGetRcvCnt(int handle)

Visual Basic(Windows 95/98/NT)

Parameters card : card number

Return Value How many messages…

Remarks Get the unread message count in the FIFO

See Also CanGetReceiveEvent()

Usage C/C++

#include “pci7841.h

int handle = CanOpenDriver(0, 0); // open
the port 0 of card 0

…..

int count = CanGetRcvCnt(handle);.

Visual Basic(Windows 95/98/NT)

~ Error and Event Handling Functions

When the exception occurs, your program may need to take some
algorithm to recover the problem. The following functions are
operation-system depended functions. You should care about the
restriction in the operation-system.

52 • Function Reference

~ DOS Environment

CanInstallCallBack()

Purpose Install callback function of event under DOS
environment

Prototype C/C++

void far*CanInstallCallBack(int handle, int index,
void (far* proc)());

Visual Basic(Windows 95/98/NT)

Parameters handle : handle retrieve from CanOpenDriver()

Index : event type

Index Type
2 Error Warning
3 Data Overrun
4 Wake Up
5 Error Passive
6 Arbitration Lost
7 Bus Error

void (far *proc)() : Call-back function

The suggest prototype of the call-back function is
like void (far ErrorWarning)();

Return Value Previous call back function (NULL when there is no
Call back installed)

Remarks Install the call-back function for event handling

In normal state, all hardware interrupt of
cPCI/PCI-7841 wouldn’t be set except receive and
transmit interrupt. After calling the
CanInstallCallBack(), the corresponding interrupt
would be activated. The interrupt occurs when the
event happened. It will not be disabled until using
CanRemoveCallBack() or a hardware reset.

Actually, the call-back function is a part of ISR.
You need to care about the DOS reentrance

Function Reference • 53

problem, and returns as soon as possible to
preventing the lost of data.

See Also CanRemoveCallBack()

Usage C/C++

#include “pci7841.h

void (far ErrorWarning)();

int handle = CanOpenDriver(0, 0);

// open the port 0 of card 0

…

// Installs the ErrorWarning handling event and
stores the previous one.

void (far *backup) = CanInstallCallBack(0, 2,
ErrorWarning);

CanRemoveCallBack(0, 2, NULL); // Remove
the call-back function

CanCloseDriver(handle);

54 • Function Reference

CanRemoveCallBack()

Purpose Remove the callback function of event under DOS
environment

Prototype C/C++

int CanRemoveCallBack(int handle, int index, void
(far* proc)());

Visual Basic(Windows 95/98/NT)

Parameters handle : handle retrieve from CanOpenDriver()

Index : event type

Index Type
2 Error Warning
3 Data Overrun
4 Wake Up
5 Error Passive
6 Arbitration Lost
7 Bus Error

void (far *proc)() : Previous call-back function

Return Value Return 0 is successful

-1 if error occurs

Remarks Install the call-back function for event handling

In normal state, all hardware interrupt of
cPCI/PCI-7841 wouldn’t be set except receive and
transmit interrupt. After calling the
CanInstallCallBack(), the corresponding interrupt
would be activated. The interrupt occurs when the
event happened. It will not be disabled until using
CanRemoveCallBack() or a hardware reset.

Actually, the call-back function is a part of ISR.
You need to care about the DOS reentrance
problem, and returns as soon as possible to
preventing the lost of data.

Function Reference • 55

See Also CanRemoveCallBack()

Usage C/C++ (DOS)

#include “pci7841.h

void (far ErrorWarning)();

int handle = CanOpenDriver(0, 0); // open
the port 0 of card 0

…

// Installs the ErrorWarning handling event and
stores the previous one.

void (far *backup) = CanInstallCallBack(0, 2,
ErrorWarning);

CanRemoveCallBack(0, 2, NULL); // Remove
the call-back function

CanCloseDriver(handle);

56 • Function Reference

~ Windows 95/98 Environment

CanGetReceiveEvent()

Purpose Install the event under Windows 95/98/NT system

Prototype C/C++ (Windows 95/98/NT)

void CanGetReceiveEvent(int handle, HANDLE
*hevent);

Visual Basic(Windows 95/98/NT)

Parameters handle : handle retrieve from CanOpenDriver()

Heven : HANDLE point for receive event

Return Value none

Remarks Retrieve receive notify event

Under Windows 95/98/NT environment, your
program can wait the input message by waiting an
event. You can refer to following program to use
this function. But the CAN system is a heavy-load
system. Under the full speed(of course, it depends
on your system), the hardware receives the
message faster than the event occurs. Under this
condition, the event could be combined by OS. So
the total count of event may be less than actually
receive. You can call the CanGetRcvCnt() to
retrieve the unread message in the driver’s FIFO.

See Also CanGetRcvCnt()

Usage C/C++ (Windows 95/98/NT)

#include “pci7841.h

HANDLE recvEvent0;

int handle = CanOpenDriver(0, 0); // open
the port 0 of card 0

int count1;

…

Function Reference • 57

if(WaitForSingleObject(rcvEvent0, INFINITE) ==
WAIT_OBJECT_0)

{

 // You need not to call ResetEvent()…..

 err=CanRcvMsg(handle,&rcvMsg[0]
[rcvPatterns[0]]);

 rcvPatterns[0]++;

}

cout1 = CanGetRcvCnt(handle[0]);
 // To retrieve number of unread
 // in the FIFO

58 • Function Reference

CanInstallEvent()

Purpose Install the event under Windows 95/98/NT system

Prototype C/C++ (Windows 95/98/NT)

int CanInstallEvent(int handle, int index, HANDLE
hEvent);

Visual Basic(Windows 95/98/NT)

Parameters handle : handle retrieve from CanOpenDriver()

Index : event type

Index Type
2 Error Warning
3 Data Overrun
4 Wake Up
5 Error Passive
6 Arbitration Lost
7 Bus Error

HEvent : HANDLE created from
CreateEvent()(Win32 SDK)

Return Value Return 0 is successful

-1 if error occurs

Remarks Install the notify event

Unlike the Dos environment, there is only one
error handling function under Windows 95/98/NT
environment. First you need to create an event
object, and send it to the DLL. The DLL would
make a registry in the kernel and pass it to the
VxD(SYS in NT system). You can’t release the
event object you created, because it was attached
to the VxD. The VxD would release the event
object when you installed another event. One way
to disable the event handling is that you install
another event which handle is NULL (ex:
CanInstallEvent(handle, index, NULL)). And you
can create a thread to handle the error event.

Function Reference • 59

See Also CanRemoveCallBack(),CanInstallCallBack()

Usage C/C++ (Windows 95/98/NT)

#include “pci7841.h

int handle = CanOpenDriver(0, 0);

// open the port 0 of card 0

…

// Installs the ErrorWarning handling event and
stores the previous one.

HANDLE hEvent = CreateEvent(NULL, FALSE,
TRUE, “ErrorWarning”);

CanInstallEvent(0, 2, hEvent);

..create a thread ….

 Thread function

 WaitForSingleObject(hEvent, INFINITE);

ResetEvent(hEvent);

// Event handling

60 • Product Warranty/Service

Product Warranty/Service

ADLINK warrants that equipment furnished will be free from defects in
material and workmanship for a period of one year from the date of
shipment. During the warranty period, we shall, at our option, either repair
or replace any product that proves to be defective under normal
operation.

This warranty shall not apply to equipment that has been previously
repaired or altered outside our plant in any way as to, in the judgment of
the manufacturer, affect its reliability. Nor will it apply if the equipment has
been used in a manner exceeding its specifications or if the serial number
has been removed.

ADLINK does not assume any liability for consequential damages as a
result from our product uses, and in any event our liability shall not
exceed the original selling price of the equipment. The remedies provided
herein are the customer’s sole and exclusive remedies. In no event shall
ADLINK be liable for direct, indirect, special or consequential damages
whether based on contract of any other legal theory.

The equipment must be returned postage-prepaid. Package it securely
and insure it. You will be charged for parts and labor if the warranty
period is expired or the product is proves to be misuse, abuse or
unauthorized repair or modification.

