

www.icpdas.com

Warranty

All products manufactured by ICP DAS are under warranty regarding defective materials for a period of one year from the date of delivery to the original purchaser.

Warning

ICP DAS assumes no liability for damages resulting from the use of this product. ICP DAS reserves the right to change this manual at any time without notice. The information furnished by ICP DAS is believed to be accurate and reliable. However, no responsibility is assumed by ICP DAS for its use, or for any infringements of patents or other rights of third parties resulting from its use.

Copyright

Copyright 2018 by ICP DAS. All rights are reserved.

Trademark

The names used for identification only may be registered trademarks of their respective companies.

Document Revision

Version	Date	Description of changes
Rev1.0	2018-08-19	First release for tWF series

Table of Contents

1.	Int	roducti	ion	.4
	1.1		Wireless connection mode	. 4
	1.2		Features	. 4
		1.2.2	Features Description	. 5
	1.3		Specifications	. 6
2.	Ha	rdware	2	.8
	2.1		Front Panel	. 8
		2.1.2	LED Indicator	. 8
		2.1.3	I/O Connector Pin Define	. 9
	2.2		Reset to default	11
	2.3		Dimensions	12
	2.4		Hardware Connection	13
		2.4.2	Power connection	13
		2.4.3	I/O connection	13
3.	Sof	tware .	1	15
	3.1		tWF's Utility(AP Mode)	15
		3.1.2	Main Screen	15
		3.1.3	Configuration/Setup	17
	3.2		tWF Utility (Station IP scanner)	20
	3.3		IP scanner	21
4.	Ap	plicatio)n	22
	4.1		Connection with Modbus TCP utility	22
5.	Mo	dbus A	pplications	24
	5.1		What is Modbus TCP/IP?	24
	5.2		Protocol Description	25
		5.2.1	MBAP	25
		5.2.2	Function Code	26
		5.2.3	Data	26
		5.2.4	Response	27
		5.2.5	Data Encoding	27
	5.3		Address Mapping	29
		5.3.1	tWF-PD4R3 I/O Address Mapping	29
		5.3.2	tWF-PD4SR2A/D I/O Address Mapping	30
		5.3.3	tWF-PD8 I/O Address Mapping	31
		5.3.4	tWF-R6 I/O Address Mapping	31

1. Introduction

The tWF series I/O controller have WLAN connection complies with the IEEE802.11b/g/n standards. With the popularity of 802.11 network infrastructure, the tWF series I/O controller make an easy way to incorporate wireless connectivity into monitoring and control systems. They also support Modbus TCP protocol and the network encryption configuration, which makes perfect integration to SCADA software and offer easy and safe access for users from anytime and anywhere.

Figure 1-1: Application architecture for the tWF series

1.1 Wireless connection mode

tWF series support both AP(Access Point) & STA(Station) wireless connection modes of WLAN.

1.2 Features

- Wi-Fi communication remote I/O controller
- Compatible with IEEE 802.11b/g/n standards
- Support Station(STA) and Access Point(Limited-AP, 1 Client) modes for wireless networks
- Support WEP, WPA and WPA2 wireless encryption
- Support Modbus TCP protocols
- Support DHCP Server(AP), DHCP Client or Static IP(STA) network configuration
- Wide operating temperature range
- Wide power supply range
- Software Digital Input wit 32-bit counter
- Photo couple Isolation input, Relay or SSR Isolation output

1.2.2 Features Description

The tWF controller offers the most comprehensive configuration to meet specific application requirements. The following list shows the features designed to simplify installation, configuration and application.

Compatible with IEEE 802.11b/g/n standards

tWF controller complied with IEEE 802.11b/g/n standard from 2.4~2.5 GHz, and it can be used to connect your wireless LAN.

Support STA(Station) and AP(Access Point) modes for wireless networks

AP mode lets you create a Limited AP(1 Client access allow) network with the specified SSID to communicate directly with each other without the need for a wireless access point.

STA mode is the more common network configuration where all wireless hosts (clients) connect to the wireless network via a WAP (Wireless Access Point).

Support WEP, WPA and WPA2 wireless encryption

WEP and WPA are common types of security that are used to protect wireless networks. When WEP or WPA is turned on, tWF controller uses a special security key combination to allow only devices that know this key to connect to its wireless network. This applies to laptops, smart device, or any other wireless device.

Support Modbus TCP protocols

The Modbus TCP slave function on the tWF controller can be used to provide data to remote HMI/SCADA software built with Modbus TCP driver.

Also there is some other HMI Modbus App in Android Google Play you can use.

Built-in Software counter for Digital Input

Each of the Digital Input port have a 32-bit (4294967295) software counter, use to count the input triggered, it can be reset from utility or Web browser.

Built-in Multi-function I/O

Various I/O components are mixed with multiple channels in a single controller, which provides the most cost effective I/O usage and enhances performance of the I/O operations.

1.3 Specifications

Table 1-1: System Specifications

Controller	tWF-PD4R3	tWF-PD4SR2A/D	tWF-PD8	tWF-R6		
Wi-Fi Interface	Wi-Fi Interface					
Antenna		Chip Ai	ntenna			
Output Power	1	8.0 dBm @ 1 DSSS / 1	4.5 dBm @ 54 OFDM	1		
Receive Sensitivity	_9	95.7 dBm @ 1 DSSS /-	74.0 dBm @ 54 OFD	М		
Standard Supported		IEEE 802	.11b/g/n			
Wireless Mode		Station & A	P(1 Client)			
Encryption		WEP, WPA	and WPA2			
Power						
Input Voltage Range		DC 9V	~ 48V			
Power Consumption	0.84W	0.83W	0.82W	0.86W		
Mechanism	Mechanism					
Installation		DIN-	Rail			
Dimensions (W x L x H)	52 mm x 97 mm x 27 mm					
Environment						
Operating Temperature		-25°C ~	+75°C			
Storage Temperature	-30°C ~ +80°C					
Humidity		10% ~	95%			

Table 1-2: tWF I/O Specification

Controller		tWF-PD4R3	tWF-PD	4SR2A/D	tWF-PD8	tWF-R6
Digital Input						
Channels		4-		4	8	-
Input Type			Dry Cont	act: Sink		-
Dry Contact	Level	C On V	-			
	Channels	4		4	8-	-
	Max. Counts		32-bit (429	94967295)		-
Counters Max. Input Frequency			-			
Photo-Isolati	on	3750 VDC				-
Digital Output	;		AC	DC		
Channels		3	2		-	6
Output Type	Output Type		SSR	SSR	-	Form A
Contact Rating (Resistive Load)		DC30V/5A AC250V/5A	AC240V 1.5A	DC3~30V 1A	-	DC30V/5A AC250V/5A
Relay/SSD Operate Time		5ms (max.)	2 ms (max.)		_	5ms (max.)
Relay/SSD Release Time		5ms (max.)	2 ms	(max.)	_	5ms (max.)

2. Hardware

2.1 Front Panel

The tWF Digital I/O controller front panel contains I/O connectors and LEDs.

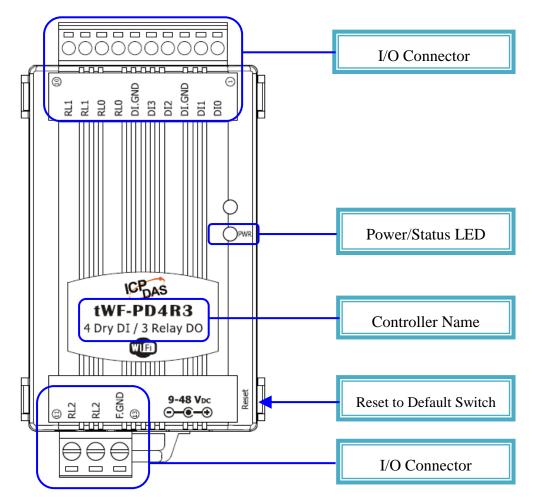


Figure 2-1: Front Panel of the tWF DIO controller

2.1.2 LED Indicator

System Status Indicator			
LED	Controller Status	LED Status	
	Wi-Fi get Link	Red LED ON	
DWD	Power On	Blue LED ON	
PWR	Locator	Red LED Blinking	
	Process reset to default	Blue LED Blinking(Fast)	

2.1.3 **I/O Connector Pin Define**

2.1.3.1 tWF-PD4R3

Terminal NO	Pin Assignment Name	
	10	RL1
	9	RL1
	8	RL0
	7	RL0
lõi	6	DI.GND
	5	DI3
	4	DI2
	3	DI.GND
	2	DI1
	1	DI0

Terminal NO	Pin Assignment Name		
	11	RL2	
	12	RL2	
	13	F.GND	
aura 2.2. I/O Compostor of tWE DD/			

Figure 2-2: I/O Connector of tWF-PD4R3

2.1.3.2 tWF-PD8

Terminal NO	Pin A	ssignment Name
	10	DI7
	9	DI6
	8	DI.GND
	7	DI5
	6	DI4
	5	DI3
	4	DI2
	3	DI.GND
	2	DI1
	1	DI0

Terminal NO	Pin A	ssignment Name	
	11	F.GND	
	12	F.GND	
	13	F.GND	
Figure 2-3: I/O Connector of tWF-PD8			

2.1.3.3 tWF-R6

Terminal NO	Pin Assignment Name	
	10	RL4
	9	RL4
	8	RL3
	7	RL3
lõi	6	RL2
	5	RL2
	4	RL1
	3	RL1
	2	RL0
	1	RL0

Terminal NO	Pin A	Assignment Name
	11	RL5
	12	RL5
	13	F.GND

Figure 2-4: I/O Connector of tWF-R6

2.1.3.4 tWF-PD4SR2A

Terminal NO	Pin Assignment Name		
	10	SSR1	
	9	SSR1	
	8	DI.GND	
	7	DI3	
	6	DI2	
	5	DI1	
	4	DIO	
	3	DI.GND	
	2	SSR0	
	1	SSR0	

Terminal NO	Pin Assignment Name		
	11	F.GND	
	12	F.GND	
	13	F.GND	

Figure 2-5: I/O Connector of tWF-PD4SR2A

2.1.3.5 tWF-PD4SR2D

Terminal NO	ninal NO Pin Assignment Name		
	10	SSR1-	
	9	SSR1+	
	8	DI.GND	
	7	DI3	
	6	DI2	
	5	DI1	
	4	DI0	
	3	DI.GND	
	2	SSR0-	
	1	SSR0+	

Terminal NO	Pin Assignment Name		
	11	F.GND	
	12	F.GND	
	13	F.GND	

Figure 2-6: I/O Connector of tWF-PD4SR2D

2.2 Reset to default

Press & hold the reset button in right side over 6 Sec until the Red LED quick flash then release to restore tWF default setting, default is set in AP mode.



Figure 2-7: Reset button locate in the right side of tWF Controller

2.3 Dimensions

The diagrams below provide the dimensions of the tWF I/O Controller to use in defining your enclosure specifications. All dimensions are in millimeters.

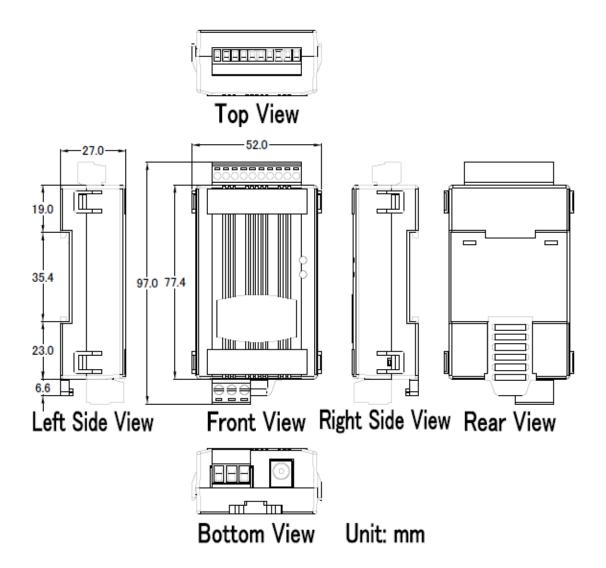


Figure 2-8: Dimension of the tWF I/O Controller

2.4 Hardware Connection

2.4.2 **Power connection**

The following figures describe the Power

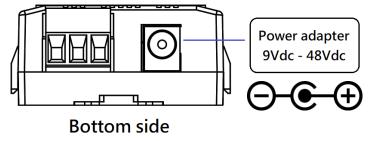


Figure 2-9: Power connection

2.4.3 I/O connection

2.4.3.1 Digital Input(DI) wiring

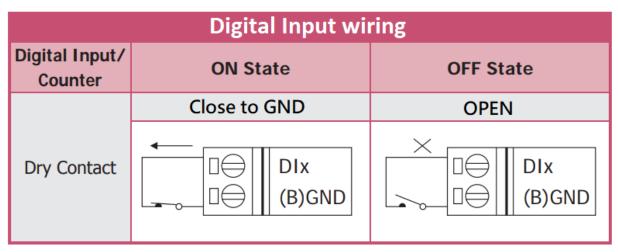


Figure 2-10: DI Dry contact wiring

2.4.3.2 Digital Output(DO) Relay wiring

Digital Output Relay wiring			
	ON State	OFF State	
Form A Ralay	AC/DC RLx RLx	AC/DC × D RLx RLx	

Figure 2-11: Relay DO wiring

2.4.3.3 Digital Output(DO) SSR AC wiring

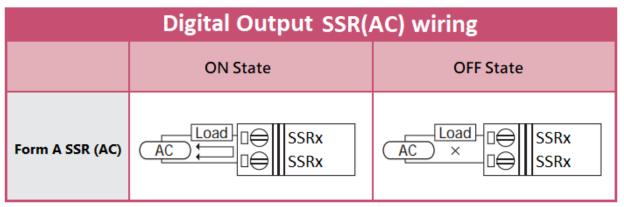


Figure 2-12: SSR(AC) DO wiring

2.4.3.4 Digital Output(DO) SSR DC wiring

Digital Output SSR(DC) wiring			
	ON State	OFF State	
Form A SSR(DC)	Load □⊖ SSRx+ □⊖ SSRx- SSRx-	Load DC × □⊖ SSRx+ SSRx-	

Figure 2-13: SSR(DC) DO wiring

3. Software

The tWF Utility provides the simple way to operating and acquire I/O status. tWF Utility can be used the wireless network interface to configure. Provide AP(Access Point) & STA(Station) mode to connect the tWF I/O Controller.

tWF Utility available on both Windows & Android application, also it can work in Web browser to operating and configure the tWF I/O Controller,

Utility Support Windows 7 (or later versions) and Android 5.0 (or later versions).

3.1 tWF Utility(AP Mode)

The following is the main screens provided by tWF Utility, these utility tools can be thought as a useful tool for I/O control and monitoring on the tWF series Controller. It supplies several functions, such as I/O operating, Controller connection, Wi-Fi configuration setting and F/W upgrade, etc.

3.1.2 Main Screen

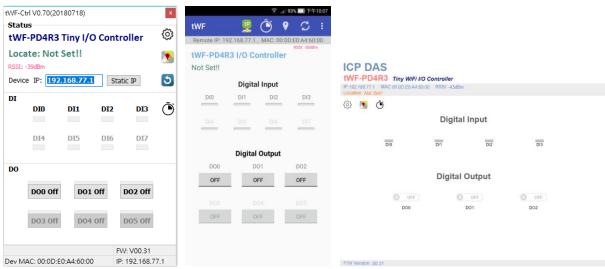


Figure 3-1: tWF Utility main screen (From left to right is Windows Utility, Android App & Web browser)

3.1.2.1 Controller Status

Show the connected controller information, user define Locate string, RSSI strength, Device IP & Static IP button for changing device IP in STA mode.

Status tWF-PD4R3 Tiny I/O Controller	
Locate: Not Set!!	?
Device IP: 192.168.77.1 Static IP	৩

3.1.2.2 DI/DO Status & Control

Show the DI/DO status, If channel not support, utility will disable those unused channel. The value can be read(DI) or write(DO) in this area.

Counter icon show each DI input triggered times(On edge).

DI	DIO	DI1	DI2	DI3	Ō
	DI4	DI5	DI6	DI7	
DO	DO0 Off	DO1	Off	DO2 Off	
	DO3 Off	DO4	• Off	D05 Off	

3.1.2.3 Status Bar

Show the F/W Version, Device's MAC address and Device's IP address.

	FW: V00.30
Dev MAC: 00:0D:E0:A4:6F:F6	IP: 192.168.77.1

3.1.2.4 ICON

ICON	function		
\$	Setup	Open the Setup Screen(Android versions Setup function under the icon)	
	Find	Red Led blinking ,use to find the connected	
	Controller	Controller	
3 📿	Refresh	Refresh status Web operating please use E5 or Refresh	
:	Web operating please use F5 or RefreshMenuOnly Android Device, Include setup, FW Version & About.		
Ō	DI Counter	Show the DI trigger counter page	

Table 3-1: icon Indicator

3.1.3 Configuration/Setup

🍜 tWF.Setup				_		×
AP		Station				
SSID Name:	twf-pd4r3-Ap-A46000	SSID Name:	tWFHUB			
Key Type:	Open OWPA/WPA2	Key Type:	⊖ Open	⊖ WEP	WPA	/WPA2
SSID Key:		SSID Key:				\checkmark
WEB		🗌 Static IP				
Login Key:		IP;				
Modbus		Net mask:	255.255.	255.0		
Port:	502	Gate way:		233.0		
Location						
String:	Not Set!!	WiFi Mode	AP	◯ Station		
			_			
5	Reset to Default	Update F/W		🖒 Reboot	device	
		0%				

Figure 3-2: tWF Utility setup page

Click apply icon to save each subject's setting, after finish all setting click to make device take effect on new setting

AP:

SSID Name

- 1. Controller's SSID in Wi-Fi AP mode, (default will be tWF-[Controller Name]-xxxxxx, show as below,
 - a. tWF-PD4R3-xxxxx
 - b. tWF-PD4SR2A-xxxxx
 - c. tWF-PD4SR2D-xxxxxx
 - d. tWF-PD8-xxxxx
 - e. tWF-R6-xxxxx

Note: xxxxxx is the last 6 character MAC address of your device.

Key Type

AP mode SSID Key type,(default is **Open**)

SSID Key

AP mode SSID Key, (default is None)

STA:

SSID Name

Wi-Fi AP's SSID intent to connect,(default is tWFHUB)

Key Type

Wi-Fi AP's SSID Key Type,(default is WPA/WPA2)

SSID Key

Wi-Fi AP's SSID Key,(default is 0000000)

Static IP:

IP: Specific an IP that is not been used.

Mask: Default will be 255.255.255.0.

Gateway: Basically define in the AP you are going to connect.

SSID	Service Set Identifier: Connected devices must be the same SSID, SSID
221D	length must not exceed 31 characters.
	Key of Encryption, connected devices must with the same Key.
	Open : No Key request.
Кеу Туре	WEP(Shared) : Key length must be 31 characters.
	WPA/WPA2-PSK : Key length must between 8~31 characters.
	Characters of key should be in range of: $[0 \sim 9_{-}]$ or $[A \sim F]$ or $[a \sim f]$.

Table 3-2: Station SSID & Key type configure

WiFi Mode:

tWF Controller working mode, (default is in AP)

AP (Access Point) :

PC or Android Device connect to tWF Controller directly through AP(Fixed IP:**192.168.77.1**), AP mode support only one connection, If Multiple devices connect at a same time, only first connected devices can access.

STA(Station):

tWF Controller will auto connect to specific WiFi AP, PC or Android Device also need to connect to the same AP, then they can use those tWF Controller in same domain.

*. Please check specific WiFi AP is active and SSID/key is same as the setting before use.

WEB:

Open your Web Browser, fill the URL with the IP that been arrange to the device and enter. A while you will get a dialog for Account & Password, both Account & Password are "admin" for default.

- Modify Web password need 5 characters (max).
- In AP mode, the IP will always be **192.168.77.1**.
- In STA mode, use the IP scanner utility to discovery tWF device, found your device & enter the IP you intent to access.

Location information:

Set the information for you to identify & locate those Controller easily, length must under 31 characters.

Modbus Port:

Modify Modbus TCP Port (default is 502)

3.2 tWF Utility (Station IP scanner)

🎏 tWF STA IP Sacr	nner V0.30(20180817)		
[區域連線] 10.0.8	.9	•	3 Adapter
Scan IP from: 1 Get Device :	to 16		٩
IP Address	Device Type	Location/Locator	Setup 🔺

- a. tWF Controller set to Station mode and connect to Wi-Fi AP
- b. PC Connect to the same Wi-Fi AP

🏂 tWF STA IP Sacr	nner V0.30(20180817)		
[VMware Networ	192.168.12.3	•.1 5.1	Adapter
IP Address	Device Type	Location/Locator	Setup 🔺
L			

c. Select the adapter network domain intent to use

★ tWF STA IP Sacr [無線網路連線 9] Scan IP from: 1 Get Device : 10		T	Adapter	<
IP Address	Device Type	Location/Locator	Setup	*
192.168.12.5	tWF-PD4R3[4DI/3DO]	Not Set!!	Setup	
192.168.12.6	tWF-PD8[8DI]	#2	Setup	
192.168.12.7	tWF-R6[6D0]	Not Set!!	Setup	
192.168.12.8	tWF-PD4R3[4DI/3DO]	Not Set!!	Setup	
192.168.12.9	tWF-PD8[8DI]	Not Set!!	Setup	
192.168.12.10	tWF-PD4R3[4DI/3DO]	Not Set!!	Setup	
192.168.12.12	tWF-PD8[8DI]	Not Set!!	Setup	
192.168.12.13	tWF-PD4SR2A[4DI/2AC SSR]	Not Set!!	Setup	
192.168.12.14	tWF-PD4R3[4DI/3DO]	Not Set!!	Setup	
192.168.12.15	tWF-PD4SR2D[4DI/2DC SSR]	Not Set!!	Setup	
				Ŧ
can Complete				

- d. Click **Q** to scan the controller in WiFi domain
- e. Active controller will show, click on each row will open Web Browser with the IP, click on "Setup" to enter setup page of the selected device.

3.3 IP scanner

There are lot of Free IP scanner tools in both Windows & Android OS, for example "Advanced IP Scanner" for Windows, "Network Analyzer" for Android, those are high performance scanner tools on each OS.

4. Application

Users can use a Computer or Smart Device to communicate with the tWF devices in the application. It can complete the purpose of I/O control to wireless network by this way.

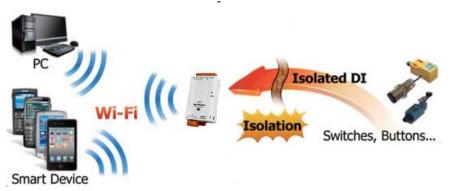


Figure 4-1: tWF + PC/Laptop/Smart Device application architecture

4.1 Connection with Modbus TCP utility

- a. Open Modbus TCP utility and key in the IP address, Port as "502". Finally, click the "Connect" button.
- b. If the network settings are correct, this will immediately establish a connection.
- c. Use the function code "0x02", and set the Reference Number as "0x00", Bit Count as "0x08" to get the 8 CHs DI value.

😋, MBTCP Ver. 1.1.4		X
ModbusTCP IP: 192.168.77.1 Port: 502 Connect Disconnect T Data Log	Protocol Description FC5 Write single coil (0xxxx) for D0 (Prefixed 6 bytes of Modbus/TCP protocoil Byte 0: Transaction identifier - copied by Byte 2: Protocoi identifier-0 Byte 3: Protocoi identifier-0 Byte 4: Length field (upper byte)=0	
Foling Mode (no wait) Start Stop Timer mode (fixed period) Interval 100 start Stop	Statistic Packet Command Differer Total Packet bytes 276 Packet Quantity sent 23 Polling or Timer mode Date/Time) Start time Start Time Stop time Stop Time	y Response Total Packet bytes 259
[Byte0] [Byte1] [Byte2] [Byte3] [Byte4] [By 1 2 0 0 0 6 1 2 0 0 0 8 [Byte0] [Byte1] [Byte2] [Byte3] [Byte4] [By 01 02 00 00 00 06 → 01 02 00 00 00 08		
Clear	Lists	EXIT Program

Figure 4-2: Digital Input reading screen

- d. Use the function code "0x01", and set the Reference Number as "0x00", Bit Count as "0x08" to get the 8 CHs DO value.
- e.

g.

ModbustCP IP: 192.168.77.1 Port: 502 Connect Disconnect IF Data Log	Protocol Description FC5 Write single coll (0xxxx) for D0 [Prefixed 6 bytes of Modbus/TCP protocol] Byte 0: Transaction identifier - copied by server - usually 0 Byte 1: Transaction identifier - copied by server - usually 0 Byte 2: Transaction identifier - copied by server - usually 0 Byte 2: Protocol identifier=0 Byte 3: Protocol identifier=0 Byte 4: Length field (upper byte)=0
Polling Mode (no wait) Start Stop Timer mode (fixed period) Interval 100 ms Set Start Stop	Statistic Clear Statistic Command Duarity Total Packet bytes 252 Packet Quantity sent 21 Poling or Timer mode (Date/Time) Poling Mode Timing (ms) Start Time Start Time Stop Time Stop Time
Byte0) (Byte1) (Byte2) (Byte3) (Byte4) (Byt 12006 110008 Byte0) (Byte1) (Byte2) (Byte3) (Byte4) (Byt 0102000006 -> 01010000000	Send Comman

Figure 4-3: Digital output reading screen

- f. Use the function code "0x05", and set the Reference Number as "0x00", Bit Count as "0xFF" to turn on the CH0 DO, & 0x00 to turn off.
 - B. MBTCP Ver. 1.1.4 × ModbusTCP Protocol Description FC5 Write single coil (0xxxx) for DO • IP: 192.168.77.1 Prefixed 6 bytes of Modbus/TCP protocol] Byte 0: Transaction identifier - copied by server - usually 0 Byte 1: Transaction identifier - copied by server - usually 0 Byte 2: Protocol identifier=0 Byte 3: Protocol identifier=0 Port : 502 Connect Disconnect Byte 4: Length field (upper byte)=0 🔲 Data Log Polling Mode (no wait) Statistic Clear Statistic Packet Quantity Differen Command Response Start Total Packet bytes Total Packet bytes 0.00 % Packet Quantity sent 19 Packet Quantity received 19 node (fixed period 0 Polling or Tir Start time de (Date/Time) Pollina Mode Tim Interval 100 ms Max 0 Start Time Start Stop time Min 1000 Stop Stop Time [Byte0] [Byte1] [Byte2] [Byte3] [Byte4] [Byte5] 1 2 0 0 0 6 1 5 0 2 ff 00 [Byte0] [Byte1] [Byte2] [Byte3] [Byte4] [Byte5] [Byte0] [Byte1] [Byte2] [Byte3] [Byte4] [Byte5] Clear Lists EXIT Program

Figure 4-4: Digital output turn on

5. Modbus Applications

The tWF include a Modbus port that allows you to access terminals data via Wi-Fi and communicates using a master-slave technique in which only one device (the master) can initiate transactions (called queries). The other devices (slaves) respond by supplying the requested data to the master, or by taking the action requested in the query.

Most SCADA (Supervisor Control And Data Acquisition) and HMI software can easily integrate serial devices via the Modbus protocol, such as Citect, ICONICS, iFIX, InduSoft, Intouch, Entivity Studio, Entivity Live, Entivity VLC, Trace Mode, Wizcon, Wonderware, etc.

For Android Device, a freeware HMI Modbus is easy to use.

5.1 What is Modbus TCP/IP?

Modbus is a communication protocol developed by Modicon in 1979.

Different versions of Modbus used today include Modbus RTU (based on serial communication like RS485 and RS232), Modbus ASCII and Modbus TCP, which is the Modbus RTU protocol embedded into TCP packets.

Modbus TCP is an internet protocol. The protocol embeds a Modbus frame into a TCP frame so that a connection oriented approach is obtained thereby making it reliable. The master query's the slave and the slave responds with the reply. The protocol is open and hence highly scalable.

5.2 Protocol Description

The Modbus protocol defines a simple protocol data unit independent of the underlying communication layers. The mapping of Modbus protocol on network can introduce some additional fields on the application data unit.

Modbus/TCP Application Data Unit						
Transaction IDProtocol IDLengthUnit IDFCodeData						
(2 bytes)	(2 bytes)	(2 bytes)	(1 bytes)	(1 bytes)	(0 to 252 bytes)	
MBAP Header Protocol Data Unit						
	Figure 5.1. Modbus/TCP Application Data Unit					

Figure 5-1: Modbus/TCP Application Data Unit

5.2.1 MBAP

The Modbus/TCP extension includes 7 additional bytes to the original Modbus protocol, which allows for transport over the TCP/IP layers.

A dedicated header is used on TCP/IP to identify the Modbus Application Data Unit. It is called the MBAP Header (MODBUS Application Protocol Header). The MBAP Header consists of 7 bytes of information:

Fields	Length	Description
Transaction Identifier	2 bytes	Identification of Request/Response transaction – Copied from request to response
Protocol Identifier	2 bytes	0 = Modbus protocol
Length	2 bytes	Number of following bytes - Includes the Unit Identifier
Unit Identifier	1 byte	Identification of remote slave

 Table 5-1: MODBUS Application Protocol Header

5.2.2 Function Code

The function code field of a Modbus data unit is coded in one byte. Valid codes are in the range of 1 ... 255 decimal (the range 128 - 255 is reserved and used or exception responses). When a Modbus request is sent from a Modbus Client to a Server device the function code field tells the Server what kind of action to perform.

The Modbus/TCP feature of tWF series controller supports 7 function codes, which allows the reading and writing of data contents of registers.

Function Code	Descriptions	
01 (0x01)	Read Coil Status	
02 (0x02)	Read Input Status	
04 (0x04)	Read analog Input Registers/Read counter	
05 (0x05)	Force Single Coil	
15 (0x0F)	Force Multiple Coils	

 Table 5-2: Supports Function Codes of tWF series

Any other function code request will be returned with an error response indicating the function code is not supported, as well as a request for too much data or data at a register address that not present.

5.2.3 Data

The data field of Modbus request sent from a client to server devices contains additional information that the server uses to take the action defined by the function code. This can include items like discrete and register addresses, the quantity of items to be handled, and the count of actual data bytes in the field.

The data field may be nonexistent (of zero length) in certain kinds of requests, in this case the server does not require any additional information. The function code alone specifies the action.

5.2.4 Response

If no error occurs related to the Modbus function requested in a properly received Modbus PDU (Protocol Data Unit) the data field of a Modbus response from a server to a client contains the data requested. If an error related to the Modbus function requested occurs, the field contains an exception code that the server application can use to determine the next action to be taken.

For example a client can read the ON/OFF states of a group of digital input or output or it can read/write the data contents of a group of registers.

When the server responds to the client, it uses the function code field to indicate either a normal response or that some kind of error occurred (called an exception response). For a normal response, the server simply echoes to the request the original function code.

For an exception response, the server returns a code that is equivalent to the original function code from the request PDU with its most significant bit set to logic 1.

5.2.5 Data Encoding

Modbus uses a "big-endian" representation for address and data items. This means that when a numerical quantity larger than single byte is transmitted, the most significant byte (MSB, also called the high-order byte) is send first. The following sub-topics describe the different byte of encoding and show how the data is encoded as it is within the Modbus/TCP packet.

5.2.5.1 Binary

A binary item is represented as a single bit within a data word. All binary is packed into 16-bits data words, which are accessed using function code 01 and 02. Therefore, a single register contains 16 bits of binary data, each having a specific meaning.

Value	1st	2nd	
0xAA55	0xAA	0x55	
(1010101001010101)	(10101010)	(01010101)	

Table 5-3: A single register contains 16 bits of binary data

5.2.5.2 16-bits Word

A 16-bits word item is transmitted with the most significant byte first. Function code 03 and 04 read 16-bits items at a time; therefore, each of these data items will fit within one register that is read.

Value	1st	2nd
0x1234	0x12	0x34

Table 5-4: A 16-bits word item

5.2.5.3 32-bits Double Word

A 32-bits word item is transmitted with the most significant byte first. Function 04 read 32-bits items at a time; therefore, each of these data items will fit within 2 register that is read.

Value	1 st Word	2 nd Word
0x12345678	0x5678	0x1234

Table 5-5: A 32-bits double word item

5.3 Address Mapping

5.3.1 tWF-PD4R3 I/O Address Mapping

Address	СН	Descriptions	Range	Access Type
00001~00003	3	Digital Output	0=OFF, 1=ON	R
00009~00012	4	Undefined	Always 0	R

Table 5-6: FC01 Read DO address (0xxxx)

Address	СН	Descriptions	Range	Access Type
10001~10004	4	Digital Input	0=OFF, 1=ON	R

 Table 5-7: FC02 Read DI address (1xxxx)

Address	СН	Descriptions	Range	Access Type
00001~00003	3	Digital Output	0x00=OFF, 0xFF=ON	W
00009~00012	4	Clear DI Trigger Counter	0xFF=Clear	W

Table 5-8: FC05 Write DO address (0xxxx)

Address	Reg	Descriptions	Range	Access Type
30001~30008	8	DI Counter Value, 2 Word/CH	16bit Word	R

Table 5-9: FC04 Read AI/Counter address (3xxxx)

5.3.2 tWF-PD4SR2A/D I/O Address Mapping

Address	СН	Descriptions	Range	Access Type
00001~00002	2	Digital Output	0=OFF, 1=ON	R
00009~00012	4	Undefined	Always 0	R

Table 5-10: FC01 Read DO address (0xxxx)

Address	СН	Descriptions	Range	Access Type	
10001~10004	4	Digital Input	0=OFF, 1=ON	R	

Table 5-11: FC02 Read DI address (1xxxx)

Address	СН	Descriptions	Range	Access Type
00001~00002	2	Digital Output	0x00=OFF, 0xFF=ON	W
00009~00012	4	Clear DI Trigger Counter	0xFF=Clear	W

Table 5-12: FC05 Write DO address (0xxxx)

Address	Reg	Descriptions	Range	Access Type
30001~30008	8	DI Counter Value, 2 Word/CH	16bit Word	R

Table 5-13: FC04 Read AI/Counter address (3xxxx)

5.3.3 tWF-PD8 I/O Address Mapping

Address	СН	Descriptions	Range	Access Type	
00009~000168UndefinedAlways 0R					
Table 5-14: FC01 Read DO address (0xxxx)					

AddressCHDescriptionsRangeAccess Type10001~100088Digital Input0=OFF, 1=ONR

Table 5-15: FC02 Read DI address (1xxxx)

Address	СН	Descriptions	Range	Access Type
00009~00016	8	Clear DI Trigger Counter	0xFF=Clear	W
Table 5, 16: EC05 Write DO address (Ourun)				

Table 5-16: FC05 Write DO address (0xxxx)

Address	Reg	Descriptions	Range	Access Type
30001~30016	16	DI Counter Value, 2 Word/CH	16bit Word	R

Table 5-17: FC04 Read AI/Counter address (3xxxx)

5.3.4 tWF-R6 I/O Address Mapping

00001~00006 6 Digital Output 0=OFF, 1=ON R	Address	СН	Descriptions	Range	Access Type
	00001~00006	6	Digital Output	0=OFF, 1=ON	R

Table 5-18: FC01 Read DO address (0xxxx)

Address	СН	Descriptions	Range	Access Type
00001~00006	6	Digital Output	0x00=OFF,0xFF=ON	W

Table 5-19: FC05 Write DO address (0xxxx)

1 Technical Support

If you have problems about using the tWF series I/O controller, please contact ICP DAS Product Support.

Email: service@icpdas.com