

User Manual

Version 1.0.1 June 2020

iWSN-2200 series

(iWSN Wireless Data Concentrator)

Table of Contents

1.	Int	troduction	
1	.1	Features	
1	.2	Specification	88
2.	Ge	etting Started	
2	.1	LED Indicator	
2	.2	Communication Parameter	· 16
2	.3	Initial/Run mode	22
3.	Mc	odbus Protocol	23
3	.1	01(0x01) Read the Status of the Coils (Read back DOs)	26
3	.2	02(0x02) Read the Status of the Input (Read DIs)	27
3	.3	03(0x03) Read the Holding Registers (Readback AOs)	28
3	.4	04(0x04) Read the Input Registers (Read Als)	29
3	.5	05(0x05) Force a Single Coil (Write DO)	30
3	.6	06(0x06) Preset a Single Register (Write AO)	31
3	.7	15(0x0F) Force Multiple Coils (Write DOs)	32
3	.8	16(0x10) Preset Multiple Registers (Write AOs)	
3	.9	Modbus Address Mapping Table	36
4.	iW	/SN-2200-E Web Configuration	37
4	.1	Logging in to the Web Server	38
4	.2	Home Page	40
4	.3	Network Page	41
	4.3	3.1 IP Address Selection	
		3.2 General Settings	
		3.3 Modbus Settings	
		3.5 Update by Ethernet	50
4	.4	Port Page	51
4	.5	Filter Page	52
4	.6	Monitor Page	53
4	.7	Password Page	54
4	.8	Logout Page	55
5.	Ge	etting Started	56

Appendix A: Troubleshooting	61
Appendix B: Glossary	63
Appendix C: Exception Codes	68
Appendix D: Revision History	69

Important Information

Warranty

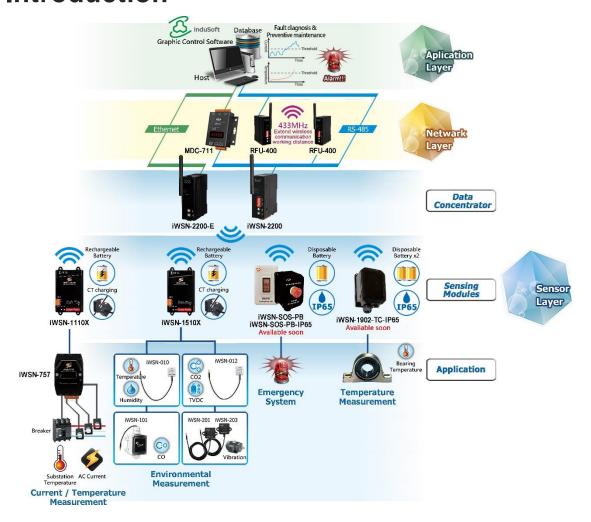
All products manufactured by ICP DAS are under warranty regarding defective materials for a period of one year, beginning from the date of delivery to the original purchaser.

Warning

ICP DAS assumes no liability for any damage resulting from the use of this product.ICP DAS reserves the right to change this manual at any time without notice. The information furnished by ICP DAS is believed to be accurate and reliable. However, no responsibility is assumed by ICP DAS for its use, not for any infringements of patents or other rights of third parties resulting from its use.

Copyright

Copyright @ 2020 by ICP DAS Co., Ltd. All rights are reserved.


Trademark

Names are used for identification purpose only and may be registered trademarks of their respective companies.

Contact us

If you encounter any problems while operating this device, feel free to contact us via mail at: service@icpdas.com .We guarantee to repond within 2 working days.

1. Introduction

With the trend of smart manufacturing and flexible manufacturing in today's industry, the production process is becoming more and more complicated, and each production stage is interlocked. If the health status of the equipment can be evaluated through the concepts of fault diagnosis and preventive maintenance, it will help maintain the smooth operation of the production line. ICP DAS develops iWSN series modules in response to the needs of the Internet of Things, big data analysis, Industry 4.0 and energy saving and carbon reduction. The series module use 433MHz wireless low frequency communication technology that can effectively apply to wireless applications in various plant areas, and solve the problem of difficult wiring on site. In addition to measuring current, temperature and humidity, gas (CO, CO2, TVOC), vibration and wireless transmission functions, the characteristics of ultra-low power consumption can be matched with the inductive charging of the current transformer (hereinafter referred to as CT). Under the condition of sufficient power line current, it can meet the supply and demand balance of working power and achieve continuous and uninterrupted measurement equipment parameters. In terms of setting, it only needs to adjust the dip switch to complete the setting, in addition to not affecting the production process, it also greatly saves the time of system construction and reduces maintenance costs. In addition, iWSN series also provides versions with external VDC and disposable batteries to meet the needs of different scenes. ICP DAS also provides iWSN series of wireless emergency distress system, which can also take into account the application of safety

warning.

iWSN series modules include wireless data concentractors and wireless sensing modules. When user want to collect more signal points or sensing types, the wireless sensing module can realize the expansion function through the interface of the iWSN expansion module. In addition, iWSN series modules can be divided into two main shafts for application fields, which are the current measurement type and environmental sensing type. After the iWSN series modules are deployed, users can quickly and easily add and adjust the type of sensing module, and this series of modules only need to adjust the dip switch of the module to complete the setting, making the module easier to deploy, adjust or maintain.

ICP DAS's iWSN series modules can assist customers in various related applications of the Industry 4.0 trend to meet the needs of monitoring equipment current, fault diagnosis, preventive maintenance, etc., such as: power panel current and temperature monitoring, factory environment environmental humidity and gas monitoring, motor vibration detection, etc., not only has the advantages of rapid deployment, but also can reduce the cost of deployment and maintenance, help production line equipment maintenance and avoid industrial safety accidents, related product information, please refer to the following product summary.

iWSN-2200 series are iWSN wireless data contractors, they support one 433MHz wireless communication interface and one RS-232/RS-485/Ethernet communication interface. Among them, the RS-232/RS-485 interface can't be used simultaneously. The series modules support Modbus RTU/TCP protocol slave, the main function can receive and buffer 31 iWSN sensor's data by wireless, and user can transmit Modbus RTU/TCP commands to read the sensor's data by RS-232/RS-485/Ethernet interface. In wireless interface, the series modules support 16 wireless channels and 8 groups ID by rotary switch and DIP switch setting, the user can easy to use the them to divide and manage the wireless network of 433MHz frequency.

1.1 Features

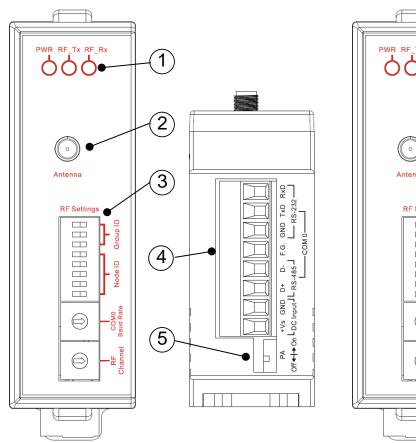
■ Hardware

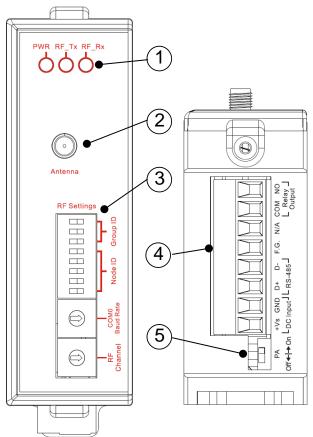
- ♦ 433MHz Radio Frequency
- ◆ 16 RF Channels
- ◆ Supported Modbus RTU/TCP protocol (Slave)
- Supported data buffers of 31 iWSN sensors
- ◆ 1 Channel Relay Output
- ◆ ESD Protection: +/-4kVfor contact terminal
- ♦ Isolation: 3000 VDC DC-to-DC, 2500 Vrms using a photocoupler
- ◆ DIN-Rail Mountable
- ◆ Operating Temperatures: -25°C~+75°C

1.2 Specification

Module		iWSN-2200	iWSN-2200-R1	iWSN-2200-E	
RF Interface					
Radio Frequency		433MHz			
RF C	Channel	0~15 (Co	0~15 (Configured by rotary switch)		
	mission tance	1001	100m (Line of sign, LoS)		
Conn	ectivity	Max. suppout 31	iWSN wireless sensi	ng modules	
Commun	ication				
Inte	erface	RS-232 x 1 RS-485 x 1 (Cannot be used simultaneously)	RS-485 x 1	Ethernet x 1	
Connector		Screwed Terminal Block (TXD \ RXD and GND in RS-232 / D+ \ D- in RS- 485)	Screwed Terminal Block (D+ \ D- in RS-485)	RJ-45	
Pro	otocol	Modbus RTU		Modbus TCP	
	s address de ID)	1~31			
COM0 E	Baud Rate	1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200bps, N81		10/100Mbps	
Relay Ou	itput				
Cha	annels		1 (Form A)		
Т	уре		Power Relay, (SPST N.O.)		
	Contact Rating		5A @ 250VAC 5A @ 30VDC		
	Operate Time	-	10ms (Max.)	-	
Power Relay	Release Time		5ms (Max.)		
(Form A)	Mechanical Endurance		2 × 10^7 ops.		
	Electrical Endurance		1 × 10^5 ops.		
LED Indi	cator				
PWR		Red x 1			
RF_Tx			Green x 1		

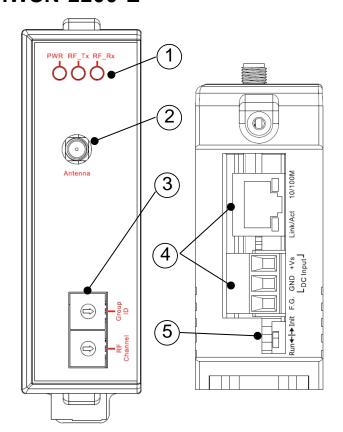
iWSN-2200 series (iWSN Wireless Data Concentrator) User Manual Version 1.0.1


RF_Rx Yellow x 1				
EMS Protection				
ESD	+/- 4kV Contact			
EFT	+/- 1kV			
Surge	+/- 1kV			
Power				
Input Voltage Range	+10 ~ +30 VDC			
Power Consumption	0.5W Max.	1W Max.		
Mechanical	Mechanical			
Dimensions (L x W x H)				
Installation	DIN-Rail			
External Antenna				
Dimensions (L x θ) 108 mm x 10 mm				
Connector RP-SMA Male (Plug)				
Gain 0 dBi - Omni-Directional				
Environment				
Operating Temperature				
Storage Temperature	orage Temperature -30 ~ +80°C			
Relative Humidity 10 ~ 90% RH, Non-condensing				

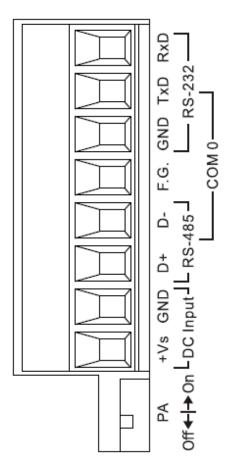

2. Getting Started

Appearance

iWSN-2200

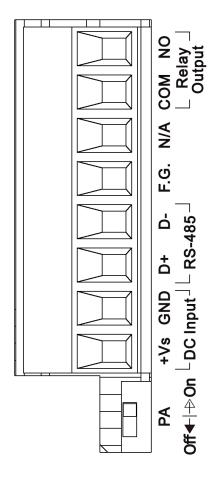

iWSN-2200-R1

Number	Instructions	
1	LED indicators	
2	Antenna connector (type RP-SMA)	
3	DIP and rotary switch of Communication parameter setting	
4	Terminal	
5	DIP switch of PA	


iWSN-2200-E

Number	Instructions
1	LED indicators
2	Antenna connector (type RP-SMA)
3	Rotary switch of Communication parameter setting
4	Terminal and Ethernet port (RJ-45 interface)
5	DIP switch of operation mode

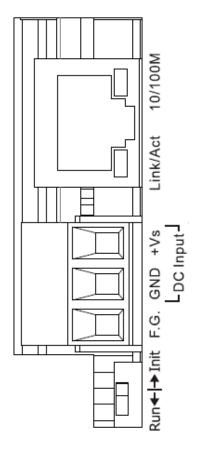
■ Pin assignments


iWSN-2200

Pin	Name	Instructions
8	RxD	
7	TxD	RS-232
6	GND	
5	F.G	Shield ground
4	D-	RS-485
3	D+	K3-465
2	GND	+10V~+30VDC
1	+Vs	+100~+30000

Item	Instructions	
	ON	Maximum power of wireless output
PA	OFF	Normal power of wireless output

iWSN-2200-R1



Pin	Name	Instructions
8	NO	Polov Output
7	СОМ	Relay Output
6	N/A	Reserved
5	F.G	Shield ground
4	D-	RS-485
3	D+	K5-465
2	GND	+10V~+30VDC
1	+Vs	+100~+30000

Item	Instructions		
	ON	Maximum power of wireless output	
PA	OFF	Normal power of wireless output	

Output Type	ON State, Read back as 1		
Relay Output	Load NO COM		
Output Type	OFF State, Read back as 0		
Relay Output	Load NO AC/DC X COM		

iWSN-2200-E

Number	Name	Instructions
3	+Vs	+10V~+30VDC
2	GND	Ground
1	F.G.	Shield ground

Switch	Instructions
Init	Initial mode
Run	Run mode

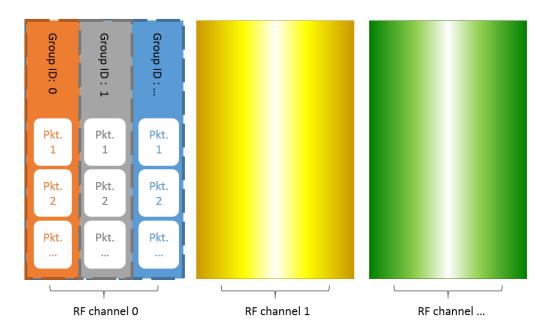
2.1 LED Indicator

iWSN-2200 series provides three LED indicators, including indicators for power status and RF wireless package be transmitting or receiving status. The following is an overview of the purpose and function of each LED indicator together with a description.

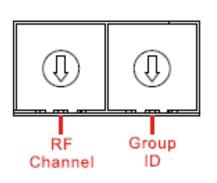
LED Name	LED Status	LED Description
Power (Red)	ON	The power of the module is ON.
RF_TX (Green) Flashing		Wireless data has been transmitted.
RF_RX (Yellow)	Flashing	Wireless data has been received.

The Ethernet status indicator on iWSN-2200-E is part of the built-in RJ-45 connector, such as shown in the figure below.

LED Name	LED Status	LED Description
10/100M	ON	100 Mbps.
10/100W	OFF	10 Mbps or Ethernet disconnected.
Link/Act	Flashing	Communicating.

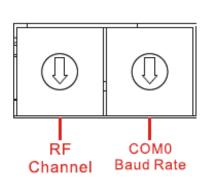

Copyright © 2020 ICP DAS Co., Ltd. All Rights Reserved E-mail: service@icpdas.com

2.2 Communication Parameter

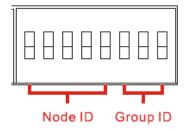

The communication parameters of iWSN-2200 series are setting by DIP switch and rotary switch. The user can set RF channel, group ID, COM0 baud rate, node ID, PA switch and initial/run mode, the description and setting of parameters as below.

- <u>RF channel</u>: The channel actually used by wireless communication can be divided into 16 channels. This parameter needs to be the same in the IWSN system to communicate. (Note 1)
- Group ID: The ID that is virtualized in the wireless channel can be divided into 7 groups. This parameter needs to be the same in the IWSN system to communicate. (Note 1)
- 3. <u>COM0 baud rate</u>: The baud rate of RS-232/RS-485. It supports 1200 to 115200(bps), and data format fix to n, 8, 1.
- 4. Node ID: The Modbus address of module. It support 1 to 31, and 0 is reserved. If the module uses RS485 serial connection, the ID number must not be repeated.
- 5. <u>PA switch</u>: This is the switch of the wireless signal power amplifier. iWSN-2200 can be switched to ON or OFF by DIP switch. iWSN-2200-E fixed enable this switch.
- 6. <u>Initial/Run mode</u>: This is the mode option of the iWSN-2200-E. Please refer to the description in section 2.3.

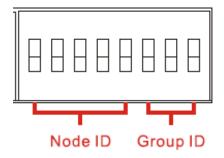
Note 1: The RF channel is similar to a highway, Group ID is similar to a lane in a highway, and the wireless data are similar to the vehicles traveling in the highway lane. That is to say, the modules with the same RF channel but different Group ID can't recognize each other's wireless packages, but the wireless packages have opportunity to collide in the air. Therefore, in order to avoid packet collisions of different groups, it is recommended to switch the wireless channel first, then switch the group number.



iWSN-2200-E



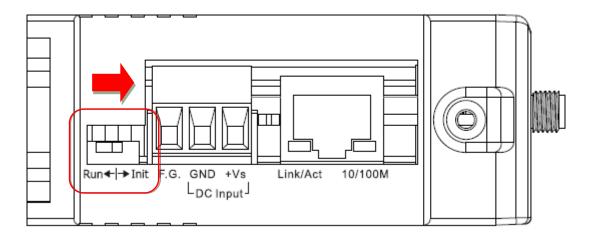
Rotary switch		Instru	ction	S			
RF Channel	0 ~ F = ch 0 ~ ch F						
	0	GID 0	4	GID 4			
	1	GID 1	5	GID 5			
Group	2	GID 2	6	GID 6			
ID	3	GID 3	7	GID 7			
	8 ~ F = Reserved, fix GID 0						


iWSN-2200 · íWSN-2200-R1

Rotary switch	Instructions					
	0	8	115200	4	С	9600
COM0 Baud Rate	1	9	57600	5	D	4800
(n, 8, 1)	2	Α	38400	6	Е	2400
	3	В	19200	7	F	1200
RF Channel	0 ~ F = ch 0 ~ ch F					

Name	Instructions				
	Group		Pin		
	,	6	7	8	
	0				
Group ID ■: ON □: OFF	1				
	2				
	3				
	4				
	5				
	6				
	7				

Name	Instructions						
				Pin			
	Node	1	2	3	4	5	
	0						
N. 1. 15	1						
Node ID	2						
■: ON □: OFF	3						
	4						
	5						
	6						
	7						


Note: Node ID 0 is reserved, if the dip switch be switch to Node ID 0 will default to Node ID 1.

Name		lr	nstruct	ions		
	Node			Pin		
		1	2	3	4	5
	8					
	9					
	10					
	11					
	12					
	13					
Node ID	14					
■ : ON	15					
□: OFF	16					
	17					
	18					
	19					
	20					
	21					
	22					
	23					
	24					
		l	l	I	l	1

Name	Instructions						
							7
	Node			Pin			_
	0.5	1	2	3	4	5	_
	25				_		-
	26						-
	27						
Node ID	28						
■ : ON	29						
☐: OFF	30						
	31						

2.3 Initial/Run mode

This is the mode option of iWSN-2200-E, and the factory default value is run mode. The user can modify the network parameters of module are like as IP address, subnet mask and gateway, but if the user forget the setting of network parameters, can switch to initinal mode and reboot the module to use factory default value.

IP address	192.168.255.1
Subnet Mask	255.255.0.0
Gateway	192.168.0.1

3. Modbus Protocol

What is Modbus?

Modbus is a communication protocol developed by Modicon in 1979. You can also visit http://www.modbus.org to find more valuable information.

The Different versions of Modbus used today include Modbus RTU (based on serial communication interfaces such as RS485 and RS232), Modbus ASCII and Modbus TCP, which is the Modbus RTU protocol embedded into TCP packets. In practice, Modbus mainly adopts a question-and-answer communication method. The master station actively sends out the Modbus message to the slave station, and then the slave station responds to the master station according to the content of the message. The protocol is completely open and highly extended.

Modbus Message Structure

Modbus TCP and Modbus RTU are used in Ethernet and serial port (ex: RS-232/RS-485) respectively, and in front of the message, Modbus TCP is 6 bytes longer than Modbus RTU. The message structure is described in the following table.

[Modbus TCP Message]

[
Byte 00~05	Byte 06~11
6 bytes header	Modbus RTU message structure

[Leading 6 bytes of Modbus/TCP protocol]

Byte 00	Byte 01	Byte 02	Byte 03	Byte 04	Byte 05
Transaction	Transaction Identifier Protocol		Identifier	Upper Byte	Lower Byte

- Transaction Identifier: Assigned by Modbus/TCP master (client).
- Protocol Identifier: 0.
- > Upper Byte: 0 (since all messages are smaller than 256).
- Lower Byte: Number of following RTU data bytes.

[Modbus RTU message structure]

Byte 06	Byte 07	Byte 08~09	Byte 10~11
Node ID	Function Code	Data	Field
(Station Number)		Reference number (Address Mapping)	Number of points
		(Address Mapping)	

➤ <u>Node ID (Station Number)</u>: specifies the address of the receiver (Modbus/TCP slave).

The first byte in the message structure of Modbus is the receiver's address. The valid addresses are in the range of 0 to 247. Addresses 0 is used for broadcast, while addresses 1 to 247 are given to individual Modbus devices.

Function Code: specifies the message type.

The second byte in the frame structure of the Modbus RTU is the function code. The function code describes what the slave is required to do. Valid function codes are between 1 and 255. The slave uses the same function code as the request to answer it. Only when an error occurs in the system will the highest bit of the function code is set to '1'. Hence the master will know whether the message has been transmitted correctly or not.

Code	Function	Reference (Address)
01 (0x01)	Read the Status of the Coils (Read back DOs)	0xxxx
02 (0x02)	Read the Status of the Input (Read back DIs)	1xxxx
03 (0x03)	Read the Holding Registers (Read back AOs)	4xxxx
04 (0x04)	Read the Input Register (Read back Als)	3xxxx
05 (0x05)	Force a Single Coil (Writes DO)	0xxxx
06 (0x06)	Preset a Single Register (Writes DOs)	4xxxx
15 (0x0F)	Force Multiple Coils (Writes DOs)	0xxxx
16 (0x10)	Present Multiple Registers (Write AOs)	4xxxx

Data Field: is the data block.

Data is transmitted in 8-, 16- and 32-bit format. The data for 16-bit registers is transmitted in high-byte first format. For example: 0x0A0B ==> 0x0A, 0x0B. The data for 32-bit registers is transmitted as two 16-bit registers, and is low-word first. For example: 0x0A0B0C0D ==> 0x0C, 0x0D, 0x0A, 0x0B.

The data field of messages sent between a master and a slave contains additional information about the action to be taken by the master or any information requested by the slave. If the master does not require this information, the data field can be empty.

Reference (Address)	Description
0xxxx	Read/Write Discrete Output or Coils
	A 0x reference address is used to output device data to a digital output channel.
1xxxx	Read Discrete Inputs
	The ON/OFF status of a 1x reference address is controlled by the corresponding digital input channel.
3xxxx	Read Input Registers
	A 3x reference register contains a 16-bit number received from an external source, e.g. an analog signal
4xxxx	Read/Write Output or Holding Registers
	A 4x register is used to store 16bits of numerical data (binary or decimal), or to send the data from the CPU to an output channel.

3.1 01(0x01) Read the Status of the Coils (Read back DOs)

This function code is used to read either the current status of the coils or the current digital output readback value.

[Request]

Byte	Description	Size	Value
00	Node ID (Station Number)	1 Byte	1 ~ 247
01	Function code	1 Byte	0x01
02-03	Starting DO Address	2 Bytes	Refer to the Modbus address depends on your slave device for more details. Byte 02 = high byte Byte 03 = low byte
04-05	Number of Points (Channels)	2 Bytes	Byte 04 = high byte Byte 05 = low byte

[Response]

Byte	Description	Size	Value
00	Node ID (Station Number)	1 Byte	1 ~ 247
01	Function code	1 Byte	0x01
02	Byte Count	1 Byte	Byte Count of the Response
			(n = (Points+7)/8)
03	Data	n Bytes	n= 1; Byte 03 = data bit 7 to 0
			n= 2; Byte 04 = data bit 15 to 8
			n= m; Byte m+2 = data
			bit(8m-1)~8(m-1)

[Error Response]

Byte	Description	Size	Value
00	Node ID (Station Number)	1 Byte	1 ~ 247
01	Function code	1 Byte	0x81
02	Exception code	1 Byte	Refer to the Modbus Standard Specifications for more details

3.2 02(0x02) Read the Status of the Input (Read DIs)

This function code is used to read the current digital input value.

[Request]

Byte	Description	Size	Value
00	Node ID (Station Number)	1 Byte	1 ~ 247
01	Function code	1 Byte	0x02
02-03	Starting DI Address	2 Bytes	Refer to the Modbus address
			depends on your slave device
			for more details.
			Byte 02 = high byte
			Byte 03 = low byte
04-05	Number of Points (Channels)	2 Bytes	Byte 04 = high byte
			Byte 05 = low byte

[Response]

Byte	Description	Size	Value
00	Node ID (Station Number)	1 Byte	1 ~ 247
01	Function code	1 Byte	0x02
02	Byte Count	1 Byte	Byte Count of Response
			(n =(Points+7)/8)
03	Data	n Bytes	n= 1; Byte 03 = data bit 7 to 0
			n= 2; Byte 04 = data bit 15 to 8
			,
			n= m; Byte m+2 = data bit(8m-
			1)~8(m-1)

[Error Response]

Byte	Description	Size	Value
00	Node ID (Station Number)	1 Byte	1 ~ 247
01	Function code	1 Byte	0x82
02	Exception code	1 Byte	Refer to the Modbus Standard
			Specifications for more details

3.3 03(0x03) Read the Holding Registers (Readback AOs)

This function code is used to readback either the current values in the holding registers or the analog output value.

[Request]

Byte	Description	Size	Value
00	Node ID (Station Number)	1 Byte	1 ~ 247
01	Function code	1 Byte	0x03
02-03	Starting AO Address	2 Bytes	Refer to the Modbus address depends
			on your slave device for more details.
			Byte 02 = high byte, Byte 03 = low byte
04-05	Number of 16-bit Registers	2 Bytes	Word Count
	(Channels)		Byte 04 = high byte
			Byte 05 = low byte

[Response]

Byte	Description	Size	Value
00	Node ID (Station Number)	1 Byte	1 ~ 247
01	Function code	1 Byte	0x03
02	Byte Count	1 Byte	Byte Count of the Response (n=Points x
			2 Bytes)
03~	Register Values	n Bytes	Register Value: n= 2; Byte 03 = high byte,
			Byte 04 = low byte n= m; Byte 03 =
			high byte, Byte 04 = low byte
			Byte m+1 = high byte
			Byte m+2 = low byte

[Error Response]

Byte	Description	Size	Value
00	Node ID (Station Number)	1 Byte	1 ~ 247
01	Function code	1 Byte	0x83
02	Exception code	1 Byte	Refer to the Modbus Standard
			Specifications for more details

3.4 04(0x04) Read the Input Registers (Read Als)

This function code is used to read either the input registers or the current analog input value.

[Request]

Byte	Description	Size	Value
00	Node ID (Station Number)	1 Byte	1 ~ 247
01	Function code	1 Byte	0x04
02-03	Starting Al Address	2 Bytes	Refer to the Modbus address depends on
			your slave device for more details.
			Byte 02 = high byte, Byte 03 = low byte
04-05	Number of 16-bit	2 Bytes	Word Count, Byte 04 = high byte, Byte 05
	Registers (Channels)		= low byte

[Response]

Byte	Description	Size	Value
00	Node ID (Station Number)	1 Byte	1 ~ 247
01	Function code	1 Byte	0x04
02	Byte Count	1 Byte	Byte Count of the Response (n=Points
			x 2 Bytes)
03~	Register Values	n Bytes	Register Values: n= 2; Byte 03 = high
			byte, Byte 04 = low byte
			n= m; Byte 03 = high byte, Byte 04 =
			low byte
			Byte m+1 = high byte
			Byte m+2 = low byte

[Error Response]

Byte	Description	Size	Value
00	Node ID (Station Number)	1 Byte	1 ~ 247
01	Function code	1 Byte	0x84
02	Exception code	1 Byte	Refer to the Modbus Standard
			Specifications for more details.

iWSN-2200 series (iWSN Wireless Data Concentrator) User Manual Version 1.0.1 Page: 29

3.5 05(0x05) Force a Single Coil (Write DO)

This function code is used to set the status of a single coil or a single digital output value.

[Request]

Byte	Description	Size	Value
00	Node ID (Station Number)	1 Byte	1 ~ 247
01	Function code	1 Byte	0x05
02-03	DO Address	2 Bytes	Refer to the Modbus address depends
			on your slave device for more details.
			Byte 02 = high byte
			Byte 03 = low byte
04-05	Output Value	2 Bytes	0xFF 00 sets the output to ON.
			0x00 00 sets the output to OFF.
			All other values are invalid and will
			not affect the coil. Byte 04 = high byte
			Byte 05 = low byte

[Response]

Byte	Description	Size	Value
00	Node ID (Station Number)	1 Byte	1 ~ 247
01	Function code	1 Byte	0x05
02-03	DO Address	2 Bytes	The value is the same as Bytes 02-03
			of the Request
04-05	Output Value	2 Bytes	The value is the same as Bytes 04-05
			of the Request

[Error Response]

Byte	Description	Size	Value
00	Node ID (Station Number)	1 Byte	1 ~ 247
01	Function code	1 Byte	0x85
02	Exception code	1 Byte	Refer to the Modbus Standard
			Specifications for more details.

3.6 06(0x06) Preset a Single Register (Write AO)

This function code is used to set a specific holding register to store the configuration values.

[Request]

Byte	Description	Size	Value
00	Node ID (Station Number)	1 Byte	1 ~ 247
01	Function code	1 Byte	0x06
02-03	AO Address	2 Bytes	Refer to the Modbus address depends
			on your slave device for more details.
			Byte 02 = high byte
			Byte 03 = low byte
04-05	Register Value	2 Bytes	Register Value
			Byte 04 = high byte

[Response]

Byte	Description	Size	Value
00	Node ID (Station Number)	1 Byte	1 ~ 247
01	Function code	1 Byte	0x06
02-03	AO Address	2 Bytes	The value is the same as Bytes 02-03 of
			the Request
04-05	Register Value	2 Bytes	The value is the same as Bytes 04-05 of
			the Request

[Error Response]

Byte	Description	Size	Value
00	Node ID (Station Number)	1 Byte	1 ~ 247
01	Function code	1 Byte	0x86
02	Exception code	1 Byte	Refer to the Modbus Standard
			Specifications for more details.

3.7 15(0x0F) Force Multiple Coils (Write DOs)

This function code is used to set multiple coils status or write multiple digital output values.

[Request]

Byte	Description	Size	Value
00	Node ID (Station Number)	1 Byte	1 ~ 247
01	Function code	1 Byte	0x0F
02-03	Starting DO Address	2 Bytes	Refer to the Modbus address depends on
			your slave device for more details.
			Byte 02 = high byte, Byte 03 = low byte
04-05	Number of Output	2 Bytes	Byte 04 = high byte, Byte 05 = low byte
	Channels (Points)		
06	Byte count	1 Byte	n = (Points +7)/8
07	Output value	n Bytes	A bit corresponds to a channel. A value of 1
			for a bit denotes that the channel is ON, while
			a value of denotes that the channel is OFF.
			n= 1; Byte 07 = data bit 7 to 0
			n= 2; Byte 08 = data bit 15 to 8
			n= m; Byte m+6 = data bit(8m-1)~8(m-1)

[Response]

Byte	Description	Size	Value
00	Node ID (Station Number)	1 Byte	1 ~ 247
01	Function code	1 Byte	0x0F
02-03	Starting DO Address	2 Bytes	The value is the same as Bytes 02-03 of the
			Request
04-05	Number of Output	2Bytes	The value is the same as Bytes 04-05 of the
	Channels (Points)		Request

[Error Response]

Byte	Description	Size	Value
00	Node ID (Station Number)	1 Byte	1 ~ 247

01	Function code	1 Byte	0x8F
02	Exception code	1 Byte	Refer to the Modbus Standard Specifications
			for more details.

3.8 16(0x10) Preset Multiple Registers (Write AOs)

This function code is used to set multiple holding registers that are used to store the configuration values.

[Request]

Byte	Description	Size	Value	
00	Node ID (Station Number)	1 Byte	1 ~ 247	
01	Function code	1 Byte	0x10	
02-03	Starting AO Address	2 Bytes	es Refer to the Modbus address depends on	
			your slave device for more details.	
			Byte 02 = high byte, Byte 03 = low byte	
04-05	Number of 16-bit Registers	2 Bytes	Word Count, Byte 04 = high byte, Byte 05 =	
	(Channels)		low byte	
06	Byte Count	1 Byte	n =Points x 2 Bytes	
07	Register Values	n Bytes	Register Values. n= 2; Byte 03 = high byte,	
			Byte 04 = low byte n= m; Byte 03 = high	
			byte, Byte 04 = low byte Byte m+1 = high	
			byte, Byte m+2 = low byte	

[Response]

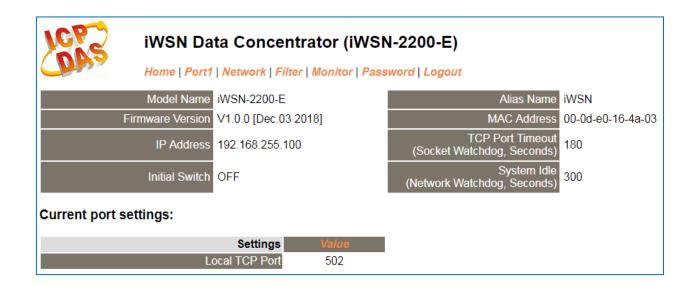
Byte	Description	Size	Value
00	Node ID (Station Number)	1 Byte	1 ~ 247
01	Function code	1 Byte	0x10
02-03	Starting AO Address	2 Bytes	The value is the same as Bytes 02-03 of the
			Request
04-05	Number of 16-bit Registers	2 Bytes	The value is the same as Bytes 04-05 of the
	(Channels)		Request

[Error Response]

Byte	Description	Size	Value
00	Node ID (Station Number)	1 Byte	1 ~ 247
01	Function code	1 Byte	0x90
02	Exception code	1 Byte	Refer to the Modbus Standard Specifications

		for more details.

3.9 Modbus Address Mapping Table


According to the name of iWSN sensing module, please refer to the following documents from <u>download center</u>:

Series	Module Name	Modbus Table Documents	
	iWSN-1110X		
iWSN-1110X	iWSN-1110X-160		
100 SIN-1110 A	iWSN-1110X-240		
	iWSN-1110X-360		
iWSN-1120X	iWSN-1120X-240-RCT1000P	ModbusTable_iWSN-11xx_series	
1W3N-1120X	iWSN-1120X-360-RCT1000P		
	iWSN-1121-DI-160		
iWSN-1121-DI	iWSN-1121-DI-240		
	iWSN-1121-DI-360		
	iWSN-1131-160		
iWSN-1131	iWSN-1131-240		
	iWSN-1131-360		
iWSN-1510X	iWSN-1510X	ModbusTable_iWSN-15xx_series	
100 210-1210X	iWSN-1511X		
iWSN-SOS	iWSN-SOS-PB	ModbusTable_iWSN-SOS_series	
100310-303	iWSN-SOS-PB-IP65		

4. iWSN-2200-E Web Configuration

When the Ethernet of iWSN-2200-E has been correctly configured and is functioning normally on the network, the IP address, TCP Port setting ca be retrieved or modified using either the eSearch Utility, or via standard web browser.

The following picture is the main screen of the web page settings. At the top of the screen is a function button, including: Home, Port1, Network, Filter, Monitor, Password, Logout and other configuration pages, below the screen is the content or parameters of each configuration page. We will explain how to set up the iWSN-2200-E module through the web page.

Note: The supported browsers are:

- Windows Edge 14 with newer versions.
- Google Chrome 55 with newer versions.
- Mozilla Firefox 50 with newer versions.
- Apple Safari 9.1 with newer versions.
- Opera 42 with newer versions.

Logging in to the Web Server

The embedded iWSN-2200-E web server can be accessed from any computer that has an Internet connection, and the step as below.

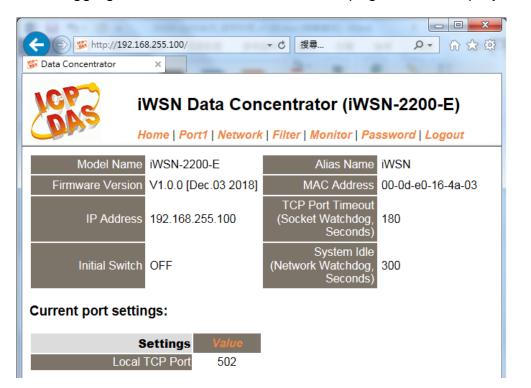
Step 1: Open a new browser window

Open a web browser, for example, Google Chrome, Firefox or Internet Explorer, which are reliable and popular Internet browsers that can be used to configure iWSN-2200-E module.

Note that if you intend to use Internet Explorer, ensure that the cache function is disabled in order to prevent browser access errors.

Step 2: Enter the URL for the iWSN-2200-E web server

Ensure that you have correctly configured the network settings for the iWSN-2200-E module (refer to Chapter 5 "Getting Started" for detailed instructions), and then enter the URL for the iWSN-2200-E web server in the address bar of the browser.


Step 3: Enter the Password

After the main login page is displayed, enter a password (the factory default password is "admin"), and then click the "Submit" button to continue.

Step 4: Log in to the Web Server

After logging into the web server, the main page will be displayed.

4.2 Home Page

The **Home** link connects to the main page, which contains two parts.

iWSN Data Concentrator (iWSN-2200-E)

The first part of this page provides basic information about the hardware and software. The software and hardware information section includes information related to the Model Name, the current Firmware version, the IP Address, the current position of the Initial Switch, the Alias, the MAC Address, and the TCP Port, and the System Timeout values. If you update the firmware for the iWSN-2200-E module, this page can be used to check the version information.

The lower section provides information related to the port settings.

Current port settings:

Settings	Value
Local TCP Port	502

4.3 Network Page

iWSN Data Concentrator (iWSN-2200-E)

After clicking the **Network** tab, the **Network** page will be displayed, allowing you to verify the current settings, configure the IP Address, and the general parameters, and restore the default settings for the module, each of which will be described in more detail below.

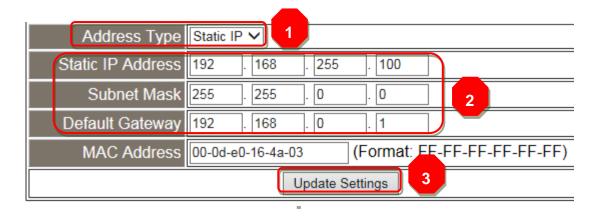
4.3.1 IP Address Selection

The Address Type, Static IP Address, Subnet Mask and Default Gateway values are the most important network settings and should always correspond to the LAN configuration. If they do not match, the module will not operate correctly. If the settings are changed while the module is operating, any connection currently in use will be lost and an error will occur

IP Address Selection

Address Type	Static IP V
Static IP Address	192 . 168 . 255 . 100
Subnet Mask	255 . 255 . 0 . 0
Default Gateway	192 . 168 . 0 . 1
MAC Address	00-0d-e0-16-4a-03 (Format: FF-FF-FF-FF)
Update Settings	

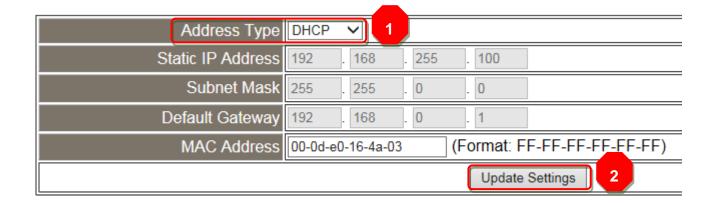
A detailed description of the settings parameter is given the next page.


>The following is an overview of the parameters contained in the IP Address Selection section:

Item	Description
Address Type	Static IP: If no DHCP server is installed on the network, the
	network settings can be configured manually. Refer to Section
	"Manual Configuration" for more details.
	DHCP: The Dynamic Host Configuration Protocol (DHCP) is a
	network application protocol that automatically assigns an IP
	address to each device. Refer to Section "Dynamic Configuration"
	for more details.
Static IP Address	Each module connected to the network must have its own unique
	IP address. This parameter is used to assign a specific IP address.
Subnet Mask	This parameter is used to assign the subnet mask for the module.
	The subnet mask indicates which portion of the IP address is used
	to identify the local network or subnet.
Default Gateway	This parameter is used to assign the IP Address of the Gateway to
	be used by the module. A Gateway (or router) is a device that is
	used to connect an individual network to one or more additional
	networks.
MAC Address	This parameter is used to set a user-defined MAC address, which
	must be in the format FF-FF-FF-FF.
Update Setting	Click this button to save the revised settings to the module.

Manual Configuration

When using manual configuration, the network settings should be assigned in the following manner:


- Step 1: Select the "Static IP" option from the "Address Type" drop-down menu.
- Step 2: Enter the relevant details in the respective network settings fields.
- Step 3: Click the "Update Settings" button to complete the configuration.

Dynamic Configuration

Dynamic configuration is very easy to perform. If a DHCP server is connected to you network, a network address can be dynamically configured by using the following procedure:

- Step 1: Select the "DHCP" option from the "Address Type" drop-down menu.
- Step 2: Click the "Update Settings" button to complete the configuration.

4.3.2 General Settings

General Settings

Ethernet Speed	Auto V (Auto=10	/100 Mbps Auto-negotiation)
HTTP port	80 (Default	t= 80)
Alias Name	iWSN	(Max. 18 chars)
System Timeout (Network Watchdog)	300	(30 ~ 65535 seconds, Default: 300, Disable: 0)
Web Auto-logout	10	(1 ~ 65535 minutes, Default: 10, Disable: 0)
UDP Configuration:	Enable V (Enable/Dis	sable the UDP Configuration, Enable=default.)
Update Settings		

>The following is an overview of the parameters contained in the **General Settings** section:

Item	Description	Default
Ethernet Speed	This parameter is used to set the Ethernet speed.	Auto
	The default value is Auto (Auto = 10/100 Mbps	
	Auto-negotiation).	
HTTP Port	This parameter is used to assign specific a HTTP	80
	port of module. The module needs to be restarted	
	when the HTTP port is changed. You need	
	manually type the new HTTP port in the address	
	bar of the browser. The default is 80.	
	For example: if the HTTP port is set to 81, then	
	enter the "IP address: HTTP port" (10.0.8.123:81).	
Alias Name	This parameter is used to assign an alias for each	iWSN
	module to assist with easy identification.	
System Timeout	This parameter is used to configure the system	300
(Network Watchdog)	timeout value. If there is no activity on the network	
	for a specific period of time, the system will be	
	rebooted based on the configured system timeout	
	value.	
	Timeout value range: 30 to 65535 (seconds);	

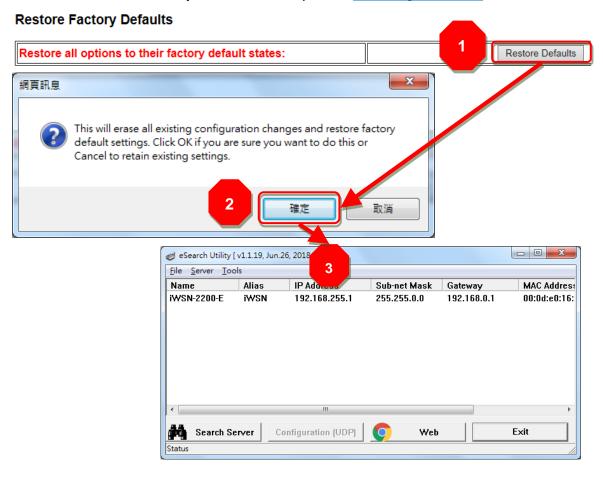
	Disable = 0;	
Web Auto-logout	This parameter is used to configure the automatic logout value. If there is no activity on the web server for a certain period of time, the current user	10
	account will be automatically logged out. Range: 1 to 65535 (minutes); Disable = 0.	
UDP Configuration	This parameter is used to enable or disable UDP configuration function.	1
Update Settings	Click this button to save the revised settings to the module.	

4.3.3 Modbus Settings

Modbus Settings

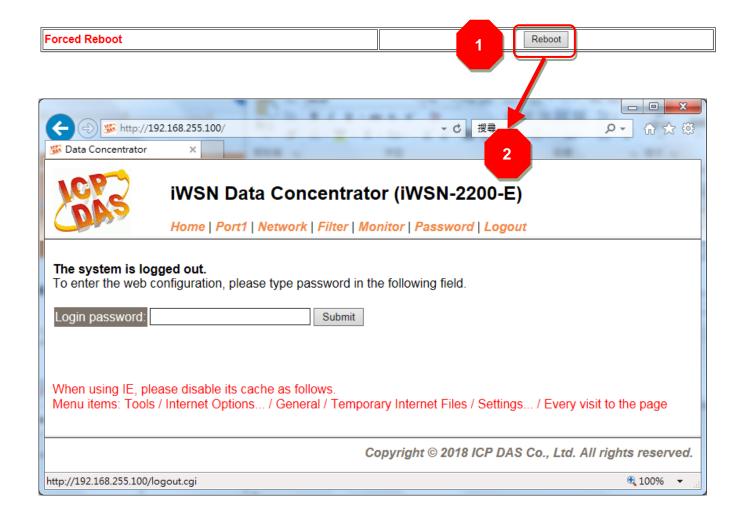
Gateway Net ID	255 (Default: 255)
	Note: This is reserved for gateway, NOT for slave devices.
Protocol Exception	(Default: 1, Disable: 0, Enable: 1)
i lotocoi Exception	Reports exception 0x41 when slave response is invalid Modbus message.
	1 (Default: 1)
CRC Exception	0: Gateway returns raw data including CRC when CRC error.
Orto Excoption	T. Gateway reports exception 0x43 when CRC error.
	2: Gateway drops packet when CRC error.
Timeout Exception	(Default: 1, Disable: 0, Enable: 1)
Timeout Exception	Gateway reports exception 0x0B for slave no response, and 0x4B for data timeout.
Busy Evention	(Default: 1, Disable: 0, Enable: 1)
Busy Exception	Gateway reports exception 0x06 when queued requests are full.
Check TCP Header	(Default: 1, Disable: 0, Enable: 1)
	Drops packet when Modbus TCP header (protocol ID, length) is wrong.
	Update Settings

> The following is an overview of the parameters contained in the **Modbus Settings** section:


Item	Description	Default
Gateway Net ID	This is reserved for gateway. (Not used to set the	255
	slave device)	
Protocol Exception	This parameter is used to enable or disable	1
	whether the slave response is checked for	
	compatibility with the Modbus RTU format. If the	
	slave response is an invalid Modbus message, a	
	0x41 exception code will be reported.	
	Enable =1; Disable = 0.	
CRC Exception	This parameter is used to enable or disable	1
	whether the validity of the RTU/ASCII CRC of the	
	slave response is checked.	
	0 = Returns the raw data, including the CRC, if a	
	CRC error occurs;	
	1 = Reports a 0x43 exception code if a CRC	

	error occurs;	
	2 = Drops the packet if a CRC error occurs.	
Timeout Exception	This parameter is used to enable or disable	1
	whether a slave/data timeout exception error is	
	reported by the Gateway. If There is no response	
	from a slave device, a 0x0B exception error will	
	be reported. If serial data is being received, a	
	0x4B exception will be reported.	
	Enable =1; Disable = 0.	

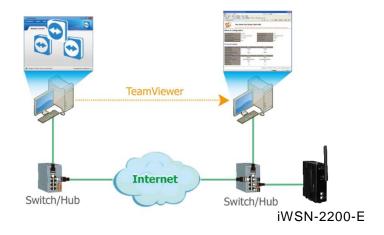
4.3.4 Restore Factory Defaults


Use the following procedure to reset all parameters to their original factory default settings:

- Step 1: Click the "Restore Defaults" button to reset the configuration.
- Step 2: Click the "OK" button in the message dialog box.
- Step 3: Check whether the module has been reset to the original factory default settings for use with the eSearch Utility. Refer to Chapter 5 "Getting Started" for more details.

Default setting			
Network Setting		Basic Setting	
IP Address	192.168.255.1	Alias Name	iWSN
Gateway Address	192.168.0.1		
Subnet Mask	255.255.0.0		
DHCP	Disabled		

The **Forced Reboot** function: can be used to force the module to reboot or to remotely reboot the device. After the module has rebooted, the original login screen will be displayed requesting that you enter your Login Password before continuing.


4.3.5 Update by Ethernet

Update by Ethernet

If the remote firmware update is failed, then the traditional firmware update (on-site) is required to make the module working again.

Step 1: Refer to firmware update manaul first.
Step 2: Run eSearch Utility to prepare and wait for update.
Step 3: Click the [Update] button to reboot the module and start update.
Step 4: Configure the module again.

Firmware update requires initialization and local network operations. Traditional firmware update requires adjusting the Init/Run Switch and reboots the module manually for the initialization of firmware update, while new firmware allows user to initialize the module via web interface without adjusting the hardware switch. Initialization via web is useful when module is installed in remote site and can be accessed by a remote PC via TeamViewer.

Note: If the remote firmware update is failed, then the traditional firmware update (Local) is required to make the module working again.

For detailed information regarding how to use this function to update the Firmware for the module, refer to the **iWSN-2200-E_Firmware_Update_Manual_vxxx.pdf**. The download address is shown below:

http://ftp.icpdas.com.tw/pub/cd/usbcd/napdos/iWSN/iWSN-2200/firmware

4.4 Port Page

iWSN Data Concentrator (iWSN-2200-E)

Home Port1 Network | Filter | Monitor | Password | Logout

After clicking the **Port1** tab, the local tcp port settings page will be displayed as below picture.

Settings:

4.5 Filter Page

iWSN Data Concentrator (iWSN-2200-E)

The Accessible IP (filter is disabled when all zero) Settings page is used to query or edit the IP Filter List. The IP Filter List restricts the access of packets based on the IP header. If one or more IP address are saved to the IP Filter table, only clients whose IP is specified in the IP Filter List can access the module.

Accessible IP (filter is disabled when all zero):

IP Filter List	IP Address
IP0:	0.0.0.0
IP1:	0.0.0.0
IP2:	0.0.0.0
IP3:	0.0.0.0
IP4:	0.0.0.0
	To The List Number: 0 ~ 4)
Delete ALLSave Configuration	(finish)
submit	i (iiiiisii)

Note: Remember to include the IP address of your configuration computer.

The following is an overview of the parameters contained in the Accessible IP section:

Item	Description
Add "IP" to the list	Add an IP address to the IP Filter List.
Delete IP# "Number"	Delete a specific IP# (Number = 0 to 4) address from the
	IP Filter List.
Delete All	Delete all items from the IP Filter List.
Save Configuration (finish)	Save a new IP Filter List to the Flash memory.
Submit	Click this button to save the revised settings to the
	module.

4.6 Monitor Page

iWSN Data Concentrator (iWSN-2200-E)

Home | Port1 | Network | Filter | Monitor | Password | Logout

After clicking the **Monitor** tab, the Current Connection Status page will be displayed showing detailed information regarding the current status of the serial port connection settings for the module.

Current Connection Status:

Port Number	Port 1
Application Mode	Server
Connected IP1:	0.0.0.0
IP2:	0.0.0.0
IP3:	0.0.0.0
IP4:	0.0.0.0
Available Connections:	32
Queued MB Requests:	0
Busy Error:	-
First Error (Hex):	0,0,0
Last Error (Hex):	0,0,0
Clear Last Error	

Note:

Click here for error codes and descriptions.

^{2.} The "Busy Error" can happen when too many Modbus requests are queued and waiting for process. Set a larger timeout and scan-time value on all master software (clients) for fixing this problem.

4.7 Password Page

iWSN Data Concentrator (iWSN-2200-E)

Home | Port1 | Network | Filter | Monitor | Password | Logout

After clicking the **Password** tab, the **Change Password** page will be displayed.

To change a password, first enter the old password in the "Current password" field (use the default password "admin") and then enter a new password in the "New password" field. Reenter the new password in the "Confirm new password" field, and then click the "Submit" button to update the password.

Step 1: Keyin the current passwork in "Current password" field. (Note: For the first time to change the password, please enter the factory default password admin in this field.)

Step 2: Keyin the new passwork in "New password" field. (Please keyin a number from 1 to 12 characters or an English word)

Step 3: Keyin the new password again in "Confirm new password" field.

Step 4: Click "Submit" button to save the new setting and change the password.

Change Password

The length of the password is 12 characters maximum.

Current password	••••	
New password	••••	
Confirm new password	••••	Submit

Note: If you forgot password, please refer to Section A1. How do I restore the web password for the module to the factory default password?

4.8 Logout Page

iWSN Data Concentrator (iWSN-2200-E)

Home | Port1 | Network | Filter | Monitor | Password Logout

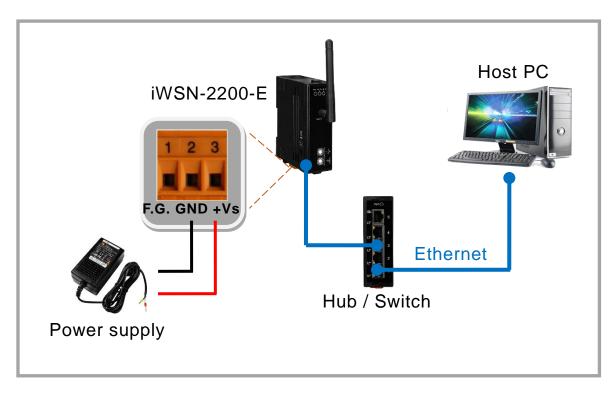
After clicking the **Logout** tab, you will be immediately logged out from the system and be returned to the login page.

The system is logged out. To enter the web configuration, please	type password in the following field.
Login password:	Submit

When using IE, please disable its cache as follows.

Menu items: Tools / Internet Options... / General / Temporary Internet Files / Settings... / Every visit to the page

iWSN-2200 series (iWSN Wireless Data Concentrator) User Manual Version 1.0.1 Page: 55


5. **Getting Started**

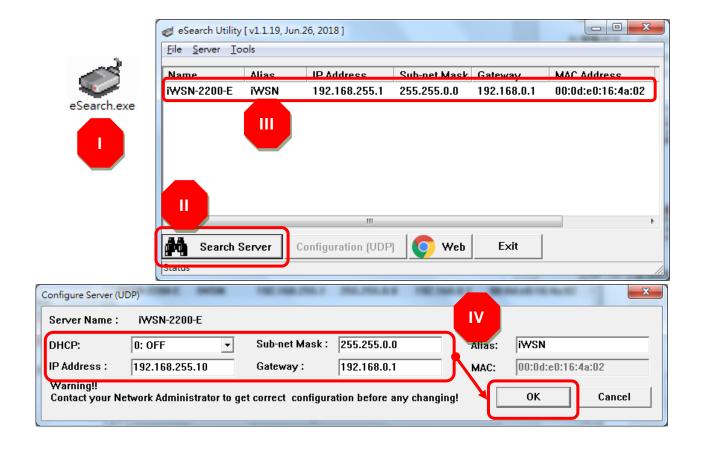
This chapter provides detailed information about the "Self-Test" process, which is used to confirm the series module is operating correctly. Before beginning the "Self-Test" process, the wiring test, Ethernet configuration and search/Modbus utility driver installation procedures must first be fully completed. Follow the procedure described below:

iWSN-2200-E

A. Connecting the Power and Host PC

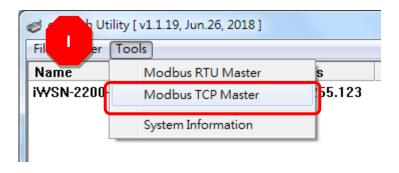
- Ensure that the network settings on your PC are configured correctly.
- II. Ensure that the Windows firewall or any Anti-Virus firewall software is correctly configured or temporarily disable these functions; otherwise the "Search Servers" function in the eSearch Utility may not work as required. You may need to contact your System Administrator for more details of how to do this.
- III. Check that the Init/Run switch is in the "Run" position.
- IV. Connect both the module and the Host computer to the same sub-network or the same Ethernet Switch, and then supply power (+12 to +30 VDC) to the module.

V. Verify that the Power (PWR) LED indicator (red) of module is ON.

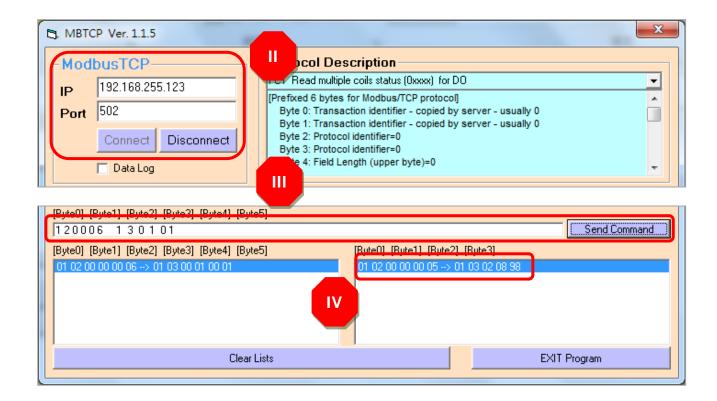

B. <u>Installed eSearch Utility software</u>

 Downloaded the eSearch Utility and installed according to the installation instructions. The eSearch Utility can be obtained from the ICP DAS web site.
 The location of the download addresses is shown below:

http://ftp.icpdas.com/pub/cd/tinymodules/napdos/software/esearch/


C. Configuring Network Setting

- I. Double click the eSearch Utility shortcut on the desktop.
- II. Click the "Search Servers" button to search your module.
- III. Once the search process is complete, double-click the name of the module to open the "Configure Server" dialog box.
- IV. Enter the network settings information, including the **IP**, **Mask and Gateway addresses**, and then click "**OK**" button. The new settings for the module will take effect within 2 seconds. If you don't know the correct network configuration information, contact your Network Administrator to obtain the details.



D. Self-Test

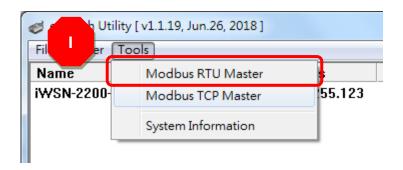
I. The eSearch Utility have supply a test software, the user can click "Tools" → "Modbus TCP Master" to open Modbus TCP Master Utility.

- II. Key in the IP address of module in Modbus TCP Master, and then click "Connect" button to connect the module.
- III. Key in Modbus command such as: 1 2 0 0 0 6 1 3 0 1 0 1 in command field, and then click "Send command" button.
- IV. If the response messages such as 01 03 02 08 98 is correct, and the 08 98 is mean as 0x0898 (Hexadecimal) = 2200 (Decimal) that mean test successfully.


• iWSN-2200

A. <u>Setting Rotary and DIP switch</u>

Please refer section 2.2 <u>"Communication Parameter"</u> to adjust COM0 baud rate and Node ID. For example, COM0 baud rate is 115200, n, 8, 1, and Node ID is 1.

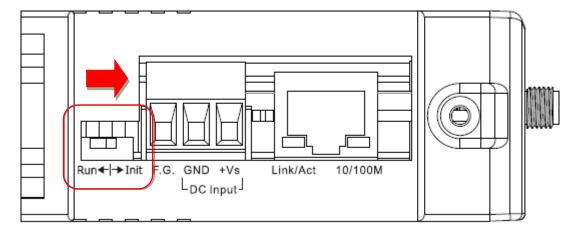

B. Connecting the Power and Host PC

Supplying +10~+30VDC power to module, and connect RS-232 to host PC. Or using RS-232 to RS-485 / USB to RS-485 converter to connect to host PC.

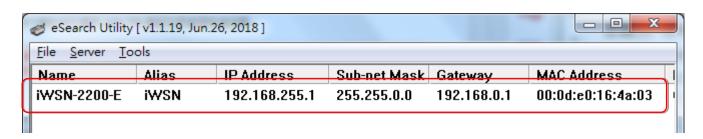
C. Self-Test

The eSearch Utility have supply a test software, the user can click "Tools" → "Modbus RTU Master" to open Modbus RTU Master Utility.

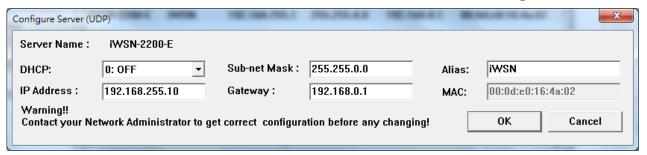
- Selecting COM port and baud rate, and click "Open" button to connect the module in Modbus RTU Master Utility.
- III. Keyin Modbus command such as 1 3 0 1 0 1 in command field, and then click "Send command" button.
- IV. If the response messages is correct mean the test successfully, such as below example.
 - iWSN-2200, for example: 01 03 02 08 98, and the 08 98 is 0x0898 (Hexadecimal) = 2200 (Decimal) that mean the code of iWSN-2200 and iWSN-2200-E.
 - iWSN-2200-R1, for example: 01 03 02 00 02, and th 00 02 is 0x0002 that mean the code of iWSN-2200-R1.


Appendix A: Troubleshooting

A1. How do I restore the web password for the module to the factory default password?


Please refer the describtion as below to reboot iWSN-2200-E to fatory default values.

Note: Be aware that ALL settings will be restored to the factory default values after the module is rebooted.


Step 1: Locate the Init/Run switch that can be found on the right-hand side of the module and set it to the "Init" position. Reboot the module to load factory default settings including default web password.

Step 2: Execute either the eSearch Utility to search for any modules connected to the network. Verify that the module has been reset to the original factory default settings. For example, the module should be shown as having the default IP address, which is 192.168.255.1.

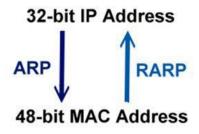
Step 3: Double-click the name of the module to open the Configure Server (UDP) dialog box, and modify the basic settings as necessary, e.g., the IP, Mask and Gateway addresses, and then click the "OK" button to save the new settings.

- Step 4: Reset the Init/Run switch on the module to the "Run" position and reboot the device.
- Step 5: Log in to the web configuration pages for the module, using the default web password, "admin".

Appendix B: Glossary

1. ARP (Address Resolution Protocol)

The Address Resolution Protocol (ARP) is a telecommunication protocol that is used to convert an IP address to a physical address, such as an Ethernet address.


Consider two machines A and B that share the same physical network. Each has an assigned IP address IPA and IPB, and a MAC address, MACA and MACB. The goal is to devise a lowlevel software application that hides the MAC addresses and allows higher-level programs to work only with the IP addresses. Ultimately, however, communication must be carried out by the physical networks using whatever MAC address scheme the hardware supplies.

Suppose machine A wants to send a packet to machine B across a physical network to which they are both attached, but A only has the Internet address for B, IPB. The question arises: how does A map that address to the MAC address for B, MAC_B?

ARP provides a method of dynamically mapping 32-bit IP address to the corresponding 48-bit MAC address. The term dynamic is used since the mapping is performed automatically and is normally not a concern for either the application user or the system administrator.

2. RARP (Reverse Address Resolution Protocol)

RARP provides a method of dynamically mapping 48-bit MAC address to the corresponding 32-bit IP address. RARP has now been replaced by the Bootstrap Protocol (BOOTP) and the modern Dynamic Host Configuration Protocol (DHCP).

3. Clients and Servers

The client-server paradigm uses the direction of initiation to categorize whether a program is a client or server. In general, an application that initiates peer-to-peer communication is called a client. End users usually invoke client programs when they use network services.

By comparison, a server is any program that waits for incoming requests from a client program. The server receives a request from a client, performs the necessary action sand returns the result to the client.

4. Ethernet

The term Ethernet generally refers to a standard published in 1982 by Digital Equipment Corp., Intel Corp. and Xerox Corp. Ethernet is the most popular physical layer Local Area Network (LAN) technology in use today.

5. Firmware

Firmware is an embedded software program or set of instructions programmed on a device that provides the necessary instructions for how the device communicated with other computer hardware, and is located or stored in a semi-permanent storage area, e.g., ROM, EEPROM, or Flash memory. Firmware can often be updated by downloading a file from the manufacturer's web site or FTP.

6. ICMP (Internet Control Message Protocol)

ICMP provides a method of communicating between the Internet Protocol software on one machine and the corresponding software on another. It allows a gateway to send error or control messages to other gateways, or allows a host to diagnose problems with the network communication.

7. Internet

Physically, the Internet is a collection of packet switching networks interconnected by gateways that together with the TCP/IP protocol, allows them to perform logically as a single, large and virtual network. The Internet recognizes hosts using 32-bit IP address.

8. IP (Internet Protocol) Address

Each interface on the Internet must have a unique IP address (also called an Internet address). These addresses are 32-bit numbers, and are normally written as four decimal numbers, one for each byte of the address for example "192.168.41.1". This is called dotted-decimal notation.

9. Subnet Mask

A Subnet mask, often simply called the "Mask", is a 32-bit number that masks and IP address, and divides the IP address into the network address and the host address. Given its own IP address and its subnet mask, a host can determine whether a TCP/IP packet is destined for a host that is (1) on its own subnet, or (2) on a different network. If (1), the packet will be delivered directly; otherwise it, will be delivered via a gateway or a router.

10. Gateway

Computers that interconnect two networks and pass packets from one to the other are called Internet Gateways or Internet Routers. Gateways route packets that are based on the destination network, rather than the destination host.

11. MAC (Media Access Control) Address

To allow a computer to determine which packets are meant for it, each device attached to an Ethernet network is assigned a 48-bit integer known as its MAC address (also called the Ethernet address, the hardware address or the physical address). A MAC address is normally written as eight hexadecimal numbers, for example "00:71:88: AF: 12:3e:0f:01". Ethernet hardware manufacturers purchase blocks of MAC addresses and assign them in sequence as they manufacture Ethernet interface hardware. Thus, no two hardware interfaces can have the same MAC address.

12. Packet

A packet is the unit of data sent across a physical network. It consists of a series of bits containing data and control information, including the source and the destination node (host) address, and is formatted for transmission from one node to another.

13. Ping

Ping is a network administration utility used to test the whether a host on an Internet network is active, and to measure the round-trip time for messages sent from the originating host to a destination computer. Ping operates by sending an ICMP echo request message to a host, expecting an ICMP echo reply to be returned. Normally, if a host cannot be pinged, Telnet or FTP cannot be used to connect to the host. Conversely, if Telnet or FTP cannot be used to connect to a host, Ping is often the starting point to determine the nature of the problem.

14. Socket

Each TCP segment contains a source and destination port number that can be used to identify the sending and receiving application. These two values, along with the source and destination IP addresses in the IP header, uniquely identify each connection. The combination of an IP address and a port number is called a socket.

15. TCP (Transmission Control Protocol)

TCP is a set of rules used in combination with the Internet Protocol to send data in the form of message units between computers over the Internet. TCP provides a reliable flow of data between two hosts and is associated with tasks such as dividing the data passed to it from an application into appropriately sized chunks for the network layer below, acknowledging received packets, setting timeouts to make certain that the other end acknowledges packets that are sent, and so on.

16. TCP/IP

The Transmission Control Protocol (TCP) and the Internet Protocol (IP) is standard network protocols that are almost always implemented and used together in a formation are known as TCP/IP. TCP/IP can be used to communicate across any set of interconnected networks.

17. UDP (User Datagram Protocol)

UDP is an internet protocol that provides a much simpler service to the application layer as it only sends packets of data from one host to another, but there is no guarantee that the packets will reach the destination host. UDP is suitable for purposes where error checking and correction is either not necessary or is performed in the application.

iWSN-2200 series (iWSN Wireless Data Concentrator) User Manual Version 1.0.1 Page: 67

Appendix C: Exception Codes

If an exception occurs during Modbus communication, the slave device will return an Exception Code in the response message. The following is an explanation of the Exception Codes:

Exception Codes list:

Code	Name & Description
0x01	ILLEGAL FUNCTION
	Indicates that the function code received in the query is not an allowable action for the slave. If not an
	allowable action for the slave. If a Poll Program Complete command was issued, this code indicates that no
	program function
0x02	ILLEGAL DATA ADDRESS
	Indicates that the data address received in the query is not an allowable address for the slave.
0x03	ILLEGAL DATA VALUE
	Indicates that a value contained in the query data field is not an allowable value for the slave.
0x04	SLAVE DEVICE FAILURE
	Indicates that an unrecoverable error occurred while the slave was attempting to perform the requested action.
0x05	ACKNOWLEDGE
	Indicates that the slave has accepted the request and is processing it, but it will take an extended period of
	time to do so. This response is returned to prevent a timeout error from occurring in the master. The master
	can issue a Poll Program Complete message later to determine whether the processing is complete.
0x06	SLAVE DEVICE BUSY
	Indicates that the slave is engaged in processing a long-duration program command. The master should
	retransmit the message later when the slave is free.
0x07	NEGATIVE ACKNOWLEDGE
	Indicates that the extended file area failed to pass a consistency check, and the slave cannot perform the
	program function received in the query. This code is returned when a programming request using function code
	13 or 14 decimal was unsuccessful. The master should request diagnostic or error information from the slave.
0x08	MEMORY PARITY ERROR
	The slave attempted to read extended memory, but detected a parity error in the memory. The master can retry
	the request, but service may be required on the slave device.

Appendix D: Revision History

This chapter provides revision history information to this document.

The table below shows the revision history.

Revision	Date	Description
1.0.0	June. 2019	1. First release.
1.0.1	June. 2020	 Introduction to the amendment. Added iWSN-2200-R1. The Modbus address table is removed as an independent file, which is explained based on various wireless sensing modules.